Ginkgo Generated from branch based on master. Ginkgo version 1.7.0
A numerical linear algebra library targeting many-core architectures
Loading...
Searching...
No Matches
The multigrid-preconditioned-solver-customized program

The customized multigrid preconditioned solver example.

This example depends on multigrid-preconditioned-solver.

Table of contents
  1. Introduction
  2. The commented program
  1. Results
  2. The plain program

This example shows how to customize the multigrid preconditioner.

In this example, we first read in a matrix from a file. The preconditioned CG solver is enhanced with a multigrid preconditioner. Several non-default options are used to create this preconditioner. The example features the generating time and runtime of the CG solver.

The commented program

#include <ginkgo/ginkgo.hpp>
#include <fstream>
#include <iomanip>
#include <iostream>
#include <map>
#include <string>
int main(int argc, char* argv[])
{

Some shortcuts

using ValueType = double;
using IndexType = int;
CSR is a matrix format which stores only the nonzero coefficients by compressing each row of the matr...
Definition csr.hpp:146
Dense is a matrix format which explicitly stores all values of the matrix.
Definition dense.hpp:136
Parallel graph match (Pgm) is the aggregate method introduced in the paper M.
Definition pgm.hpp:76
The Incomplete Cholesky (IC) preconditioner solves the equation for a given lower triangular matrix ...
Definition ic.hpp:107
CG or the conjugate gradient method is an iterative type Krylov subspace method which is suitable for...
Definition cg.hpp:76
Iterative refinement (IR) is an iterative method that uses another coarse method to approximate the e...
Definition ir.hpp:112
Multigrid methods have a hierarchy of many levels, whose corase level is a subset of the fine level,...
Definition multigrid.hpp:136

Print version information

std::cout << gko::version_info::get() << std::endl;
const auto executor_string = argc >= 2 ? argv[1] : "reference";
static const version_info & get()
Returns an instance of version_info.
Definition version.hpp:168

Figure out where to run the code

std::map<std::string, std::function<std::shared_ptr<gko::Executor>()>>
exec_map{
{"omp", [] { return gko::OmpExecutor::create(); }},
{"cuda",
[] {
}},
{"hip",
[] {
}},
{"dpcpp",
[] {
0, gko::ReferenceExecutor::create());
}},
{"reference", [] { return gko::ReferenceExecutor::create(); }}};
static std::shared_ptr< CudaExecutor > create(int device_id, std::shared_ptr< Executor > master, bool device_reset, allocation_mode alloc_mode=default_cuda_alloc_mode, CUstream_st *stream=nullptr)
Creates a new CudaExecutor.
static std::shared_ptr< DpcppExecutor > create(int device_id, std::shared_ptr< Executor > master, std::string device_type="all", dpcpp_queue_property property=dpcpp_queue_property::in_order)
Creates a new DpcppExecutor.
static std::shared_ptr< HipExecutor > create(int device_id, std::shared_ptr< Executor > master, bool device_reset, allocation_mode alloc_mode=default_hip_alloc_mode, CUstream_st *stream=nullptr)
Creates a new HipExecutor.
static std::shared_ptr< OmpExecutor > create(std::shared_ptr< CpuAllocatorBase > alloc=std::make_shared< CpuAllocator >())
Creates a new OmpExecutor.
Definition executor.hpp:1373

executor where Ginkgo will perform the computation

const auto exec = exec_map.at(executor_string)(); // throws if not valid

Read data

auto A = share(gko::read<mtx>(std::ifstream("data/A.mtx"), exec));
constexpr T one()
Returns the multiplicative identity for T.
Definition math.hpp:803

Create RHS as 1 and initial guess as 0

gko::size_type size = A->get_size()[0];
auto host_x = vec::create(exec->get_master(), gko::dim<2>(size, 1));
auto host_b = vec::create(exec->get_master(), gko::dim<2>(size, 1));
for (auto i = 0; i < size; i++) {
host_x->at(i, 0) = 0.;
host_b->at(i, 0) = 1.;
}
auto x = vec::create(exec);
auto b = vec::create(exec);
x->copy_from(host_x);
b->copy_from(host_b);
std::size_t size_type
Integral type used for allocation quantities.
Definition types.hpp:120
A type representing the dimensions of a multidimensional object.
Definition dim.hpp:55

Calculate initial residual by overwriting b

auto one = gko::initialize<vec>({1.0}, exec);
auto neg_one = gko::initialize<vec>({-1.0}, exec);
auto initres = gko::initialize<vec>({0.0}, exec);
A->apply(one, x, neg_one, b);
b->compute_norm2(initres);

copy b again

b->copy_from(host_b);

Prepare the stopping criteria

const gko::remove_complex<ValueType> tolerance = 1e-8;
auto iter_stop =
gko::share(gko::stop::Iteration::build().with_max_iters(100u).on(exec));
.with_baseline(gko::stop::mode::absolute)
.with_reduction_factor(tolerance)
.on(exec));
auto exact_tol_stop =
.with_baseline(gko::stop::mode::rhs_norm)
.with_reduction_factor(1e-14)
.on(exec));
std::shared_ptr<const gko::log::Convergence<ValueType>> logger =
iter_stop->add_logger(logger);
tol_stop->add_logger(logger);
static std::unique_ptr< Convergence > create(std::shared_ptr< const Executor >, const mask_type &enabled_events=Logger::criterion_events_mask|Logger::iteration_complete_mask)
Creates a convergence logger.
Definition convergence.hpp:106
The ResidualNorm class is a stopping criterion which stops the iteration process when the actual resi...
Definition residual_norm.hpp:138
typename detail::remove_complex_s< T >::type remove_complex
Obtain the type which removed the complex of complex/scalar type or the template parameter of class b...
Definition math.hpp:354
detail::shared_type< OwningPointer > share(OwningPointer &&p)
Marks the object pointed to by p as shared.
Definition utils_helper.hpp:254

Now we customize some settings of the multigrid preconditioner. First we choose a smoother. Since the input matrix is spd, we use iterative refinement with two iterations and an Ic solver.

auto ic_gen = gko::share(
ic::build()
.on(exec));
auto smoother_gen = gko::share(
gko::solver::build_smoother(ic_gen, 2u, static_cast<ValueType>(0.9)));
Represents an incomplete Cholesky factorization (IC(0)) of a sparse matrix.
Definition ic.hpp:71
auto build_smoother(std::shared_ptr< const LinOpFactory > factory, size_type iteration=1, ValueType relaxation_factor=0.9)
build_smoother gives a shortcut to build a smoother by IR(Richardson) with limited stop criterion(ite...
Definition ir.hpp:311

Use Pgm as the MultigridLevel factory.

auto mg_level_gen =
gko::share(pgm::build().with_deterministic(true).on(exec));

Next we select a CG solver for the coarsest level. Again, since the input matrix is known to be spd, and the Pgm restriction preserves this characteristic, we can safely choose the CG. We reuse the Ic factory here to generate an Ic preconditioner. It is important to solve until machine precision here to get a good convergence rate.

auto coarsest_gen = gko::share(cg::build()
.with_preconditioner(ic_gen)
.with_criteria(iter_stop, exact_tol_stop)
.on(exec));

Here we put the customized options together and create the multigrid factory.

std::shared_ptr<gko::LinOpFactory> multigrid_gen;
multigrid_gen =
mg::build()
.with_max_levels(10u)
.with_min_coarse_rows(32u)
.with_pre_smoother(smoother_gen)
.with_post_uses_pre(true)
.with_mg_level(mg_level_gen)
.with_coarsest_solver(coarsest_gen)
.with_default_initial_guess(gko::solver::initial_guess_mode::zero)
.with_criteria(gko::stop::Iteration::build().with_max_iters(1u))
.on(exec);

Create solver factory

auto solver_gen = cg::build()
.with_criteria(iter_stop, tol_stop)
.with_preconditioner(multigrid_gen)
.on(exec);

Create solver

std::chrono::nanoseconds gen_time(0);
auto gen_tic = std::chrono::steady_clock::now();
auto solver = solver_gen->generate(A);
exec->synchronize();
auto gen_toc = std::chrono::steady_clock::now();
gen_time +=
std::chrono::duration_cast<std::chrono::nanoseconds>(gen_toc - gen_tic);

Solve system

exec->synchronize();
std::chrono::nanoseconds time(0);
auto tic = std::chrono::steady_clock::now();
solver->apply(b, x);
exec->synchronize();
auto toc = std::chrono::steady_clock::now();
time += std::chrono::duration_cast<std::chrono::nanoseconds>(toc - tic);

Calculate residual

auto res = gko::initialize<vec>({0.0}, exec);
A->apply(one, x, neg_one, b);
b->compute_norm2(res);
std::cout << "Initial residual norm sqrt(r^T r): \n";
write(std::cout, initres);
std::cout << "Final residual norm sqrt(r^T r): \n";
write(std::cout, res);

Print solver statistics

std::cout << "CG iteration count: " << logger->get_num_iterations()
<< std::endl;
std::cout << "CG generation time [ms]: "
<< static_cast<double>(gen_time.count()) / 1000000.0 << std::endl;
std::cout << "CG execution time [ms]: "
<< static_cast<double>(time.count()) / 1000000.0 << std::endl;
std::cout << "CG execution time per iteration[ms]: "
<< static_cast<double>(time.count()) / 1000000.0 /
logger->get_num_iterations()
<< std::endl;
}

Results

This is the expected output:

Initial residual norm sqrt(r^T r):
%%MatrixMarket matrix array real general
1 1
25.9808
Final residual norm sqrt(r^T r):
%%MatrixMarket matrix array real general
1 1
5.81328e-09
CG iteration count: 12
CG generation time [ms]: 1.41642
CG execution time [ms]: 6.59244
CG execution time per iteration[ms]: 0.54937

Comments about programming and debugging

The plain program

/*******************************<GINKGO LICENSE>******************************
Copyright (c) 2017-2023, the Ginkgo authors
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
******************************<GINKGO LICENSE>*******************************/
#include <ginkgo/ginkgo.hpp>
#include <fstream>
#include <iomanip>
#include <iostream>
#include <map>
#include <string>
int main(int argc, char* argv[])
{
using ValueType = double;
using IndexType = int;
std::cout << gko::version_info::get() << std::endl;
const auto executor_string = argc >= 2 ? argv[1] : "reference";
std::map<std::string, std::function<std::shared_ptr<gko::Executor>()>>
exec_map{
{"omp", [] { return gko::OmpExecutor::create(); }},
{"cuda",
[] {
}},
{"hip",
[] {
}},
{"dpcpp",
[] {
0, gko::ReferenceExecutor::create());
}},
{"reference", [] { return gko::ReferenceExecutor::create(); }}};
const auto exec = exec_map.at(executor_string)(); // throws if not valid
auto A = share(gko::read<mtx>(std::ifstream("data/A.mtx"), exec));
gko::size_type size = A->get_size()[0];
auto host_x = vec::create(exec->get_master(), gko::dim<2>(size, 1));
auto host_b = vec::create(exec->get_master(), gko::dim<2>(size, 1));
for (auto i = 0; i < size; i++) {
host_x->at(i, 0) = 0.;
host_b->at(i, 0) = 1.;
}
auto x = vec::create(exec);
auto b = vec::create(exec);
x->copy_from(host_x);
b->copy_from(host_b);
auto one = gko::initialize<vec>({1.0}, exec);
auto neg_one = gko::initialize<vec>({-1.0}, exec);
auto initres = gko::initialize<vec>({0.0}, exec);
A->apply(one, x, neg_one, b);
b->compute_norm2(initres);
b->copy_from(host_b);
const gko::remove_complex<ValueType> tolerance = 1e-8;
auto iter_stop =
gko::share(gko::stop::Iteration::build().with_max_iters(100u).on(exec));
.with_baseline(gko::stop::mode::absolute)
.with_reduction_factor(tolerance)
.on(exec));
auto exact_tol_stop =
.with_baseline(gko::stop::mode::rhs_norm)
.with_reduction_factor(1e-14)
.on(exec));
std::shared_ptr<const gko::log::Convergence<ValueType>> logger =
iter_stop->add_logger(logger);
tol_stop->add_logger(logger);
auto ic_gen = gko::share(
ic::build()
.on(exec));
auto smoother_gen = gko::share(
gko::solver::build_smoother(ic_gen, 2u, static_cast<ValueType>(0.9)));
auto mg_level_gen =
gko::share(pgm::build().with_deterministic(true).on(exec));
auto coarsest_gen = gko::share(cg::build()
.with_preconditioner(ic_gen)
.with_criteria(iter_stop, exact_tol_stop)
.on(exec));
std::shared_ptr<gko::LinOpFactory> multigrid_gen;
multigrid_gen =
mg::build()
.with_max_levels(10u)
.with_min_coarse_rows(32u)
.with_pre_smoother(smoother_gen)
.with_post_uses_pre(true)
.with_mg_level(mg_level_gen)
.with_coarsest_solver(coarsest_gen)
.with_default_initial_guess(gko::solver::initial_guess_mode::zero)
.with_criteria(gko::stop::Iteration::build().with_max_iters(1u))
.on(exec);
auto solver_gen = cg::build()
.with_criteria(iter_stop, tol_stop)
.with_preconditioner(multigrid_gen)
.on(exec);
std::chrono::nanoseconds gen_time(0);
auto gen_tic = std::chrono::steady_clock::now();
auto solver = solver_gen->generate(A);
exec->synchronize();
auto gen_toc = std::chrono::steady_clock::now();
gen_time +=
std::chrono::duration_cast<std::chrono::nanoseconds>(gen_toc - gen_tic);
exec->synchronize();
std::chrono::nanoseconds time(0);
auto tic = std::chrono::steady_clock::now();
solver->apply(b, x);
exec->synchronize();
auto toc = std::chrono::steady_clock::now();
time += std::chrono::duration_cast<std::chrono::nanoseconds>(toc - tic);
auto res = gko::initialize<vec>({0.0}, exec);
A->apply(one, x, neg_one, b);
b->compute_norm2(res);
std::cout << "Initial residual norm sqrt(r^T r): \n";
write(std::cout, initres);
std::cout << "Final residual norm sqrt(r^T r): \n";
write(std::cout, res);
std::cout << "CG iteration count: " << logger->get_num_iterations()
<< std::endl;
std::cout << "CG generation time [ms]: "
<< static_cast<double>(gen_time.count()) / 1000000.0 << std::endl;
std::cout << "CG execution time [ms]: "
<< static_cast<double>(time.count()) / 1000000.0 << std::endl;
std::cout << "CG execution time per iteration[ms]: "
<< static_cast<double>(time.count()) / 1000000.0 /
logger->get_num_iterations()
<< std::endl;
}
void write(StreamType &&os, MatrixPtrType &&matrix, layout_type layout=detail::mtx_io_traits< std::remove_cv_t< detail::pointee< MatrixPtrType > > >::default_layout)
Writes a matrix into an output stream in matrix market format.
Definition mtx_io.hpp:324