GNU Compiler Collection Internals

For ccc version 12.2.0

(GCC)

Richard M. Stallman and the GCC Developer Community




Copyright (©) 1988-2022 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.3 or any later version published by the
Free Software Foundation; with the Invariant Sections being “Funding Free Software”, the
Front-Cover Texts being (a) (see below), and with the Back-Cover Texts being (b) (see
below). A copy of the license is included in the section entitled “GNU Free Documentation
License”.

(a) The FSF’s Front-Cover Text is:
A GNU Manual
(b) The FSF’s Back-Cover Text is:

You have freedom to copy and modify this GNU Manual, like GNU software. Copies
published by the Free Software Foundation raise funds for GNU development.



Short Contents

Introduction . . ..o e 1
1 Contributing to GCC Development . ...................... 3
2 GCC and Portability ........ ... i 5
3 Interfacing to GCC Output . . ... .. 7
4 The GCC low-level runtime library ....................... 9
5 Language Front Ends in GCC .......................... 59
6  Source Tree Structure and Build System.................. 61
T Testsuites ..o e 79
8  Option specification files. ......... ... ... ... ... 125
9  Passes and Files of the Compiler....................... 135
10 Sizes and offsets as runtime invariants. .................. 155
11 GENERIC. ... e 169
12 GIMPLE . ..o 217
13 Analysis and Optimization of GIMPLE tuples............ 255
14 RTL Representation ............ ... .. ... 267
15 Control Flow Graph . ...... ... .. .. 333
16 Analysis and Representation of Loops................... 343
17  Machine Descriptions . .. ...t 353
18 Target Description Macros and Functions................ 503
19 Host Configuration ... ........ ... ... 691
20 Makefile Fragments. ... ...... ... i 695
21 collect. . ittt 699
22 Standard Header File Directories....................... 701
23  Memory Management and Type Information ............. 703
24 Plugins. ... ..o 713
25 Link Time Optimization.......... ... ... ... . ... ... 721
26 Match and Simplify .. ... ... 729
27 Static Analyzer....... ... ... 735
28 User Experience Guidelines . .......................... 743
Funding Free Software . . ....... ... .. . . i i 751
The GNU Project and GNU/Linux. ........... .. ... ... 753
GNU General Public License. .. ....... ..., 755
GNU Free Documentation License . ........................ 767
Contributors to GCC . ... .. e 775

Option Index . . ... 793



ii GNU Compiler Collection (GCC) Internals

Concept Index .. ... e 795



Table of Contents

Introduction ............. .. ... 1
1 Contributing to GCC Development ........... 3
2 GCC and Portability ........................... 5
3 Interfacing to GCC Output.................... 7
4 The GCC low-level runtime library ........... 9
4.1 Routines for integer arithmetic.............. .. ... ... .. 9
4.1.1 Arithmetic functions .......... .. ..o 9

4.1.2 Comparison functions ..., 10

4.1.3 Trapping arithmetic functions ................. ... .. ..... 11

4.1.4 Bit operations. .......oouuuiiii 11

4.2 Routines for floating point emulation....................... ... 12
4.2.1 Arithmetic functions ........... ... i 12

4.2.2  Conversion functions .......... ..., 13

4.2.3 Comparison functions ..., 15

4.2.4 Other floating-point functions ............................ 16

4.3 Routines for decimal floating point emulation.................. 16
4.3.1 Arithmetic functions ........... ... i 17

4.3.2 Conversion functions .......... ..., 17

4.3.3 Comparison functions ..., 20

4.4 Routines for fixed-point fractional emulation................ ... 22
4.4.1 Arithmetic functions ........... ... .. i 22

4.4.2 Comparison functions .............cooviiiieiiiieennnn... 30

4.4.3 Conversion functions .......... ..., 30

4.5 Language-independent routines for exception handling......... 56
4.6 Miscellaneous runtime library routines......................... 57
4.6.1 Cache control functions............. ... ... i L. 57

4.6.2 Split stack functions and variables........................ 57

5 Language Front Ends in GCC................ 59
6 Source Tree Structure and Build System.... 61
6.1 Configure Terms and History............ .. ... ..., 61
6.2 Top Level Source Directory...........cooiiiiiiiiiiiiiiiii.. 61
6.3 The ‘gec’ Subdirectory ... 63
6.3.1 Subdirectories of ‘gcc’. ... 63

6.3.2 Configuration in the ‘gcc’ Directory ...................... 64

6.3.2.1 Scripts Used by ‘configure’......................... 64

iii



iv GNU Compiler Collection (GCC) Internals
6.3.2.2 The ‘config.build’; ‘config.host’; and ‘config.gcc’
Files ... o 65
6.3.2.3 Files Created by configure......................... 65
6.3.3 Build System in the ‘gcc’ Directory ...................... 66
6.3.4 Makefile Targets ... 66
6.3.5 Library Source Files and Headers under the ‘gcc’ Directory
............................................................ 68
6.3.6 Headers Installed by GCC.......... ... ... ..., 68
6.3.7 Building Documentation............. ... . ool 69
6.3.7.1 Texinfo Manuals............ ... ... o .o i 69
6.3.7.2 Man Page Generation ...............ccooiiieiinn.... 70
6.3.7.3 Miscellaneous Documentation........................ 71
6.3.8 Anatomy of a Language Front End ....................... 71
6.3.8.1 The Front End ‘language’ Directory................. 72
6.3.8.2 The Front End ‘config-lang.in’ File............... 73
6.3.8.3 The Front End ‘Make-lang.in’ File................. 74
6.3.9 Anatomy of a Target Back End........................... 75
7 Testsuites.......... ... . ... L. 79
7.1 Idioms Used in Testsuite Code ..., 79
7.2 Directives used within DejaGnu tests.......................... 80
7.2.1 Syntax and Descriptions of test directives................. 80
7.2.1.1 Specify how to build the test ........................ 80
7.2.1.2 Specify additional compiler options.................. 81
7.2.1.3 Modify the test timeout value ....................... 81
7.2.1.4 Skip a test for some targets.............. ... ... 81
7.2.1.5 Expect a test to fail for some targets................. 82
7.2.1.6 Expect the compiler tocrash ........................ 82
7.2.1.7 Expect the test executable to fail .................... 82
7.2.1.8 Verify compiler messages ... 83
7.2.1.9 Verify output of the test executable.................. 84
7.2.1.10 Specify environment variables for a test............. 84
7.2.1.11 Specify additional files for a test.................... 84
7.2.1.12 Add checks at the end of a test..................... 84
7.2.2 Selecting targets to which a test applies .................. 84
7.2.3 Keywords describing target attributes .................... 86
7.2.3.1 Endianness...........c..eeiiiiiiiiiiiii e 86
7.2.3.2 Datatypesizes.......cooviiiiiiiiiiiiiiii 86
7.2.3.3 Fortran-specific attributes........................... 87
7.2.3.4 Vector-specific attributes ............... ... ... 88
7.2.3.5 Thread Local Storage attributes..................... 93
7.2.3.6 Decimal floating point attributes..................... 93
7.2.3.7 ARM-specific attributes ............................. 94
7.2.3.8  AArch64-specific attributes.......................... 99
7.2.3.9 MIPS-specific attributes............. ... oo 99
7.2.3.10 MSP430-specific attributes .................. ... ... 100
7.2.3.11 PowerPC-specific attributes ....................... 100

7.2.4 RISC-V specific attributes............................... 101



7.2.4.1 Other hardware attributes.......................... 102

7.2.4.2 Environment attributes.......... ... 103
7.2.4.3 Other attributes.......... ... i i 105
7.2.4.4 Local to tests in gcc.target/i386 ................. 108
7.2.4.5 Local to tests in gcc.test-framework.............. 108

7.2.5 Features for dg-add-options..........cooiiiiiiiin... 108
7.2.6 Variants of dg-require-support........................ 110
7.2.7 Commands for use in dg-final ......................... 111
7.2.7.1 Scan a particular file................ ... ... 111
7.2.7.2 Scan the assembly output ............... ... ... 112
7.2.7.3 Scan optimization dump files....................... 113
7.2.7.4 Check for output files .................. ... 114
7.2.7.5 Checks for gcov tests.............. .. ..ol 114
7.2.7.6 Clean up generated test files..................... ... 114

7.3 Ada Language TestSuites. ........oeiiiiiiiiiiinina.. 115
7.4 C Language Testsuites............ooiiiiii .. 116
7.5 Support for testing link-time optimizations................... 118
7.6 Support for testing gcov ... 118
7.7 Support for testing profile-directed optimizations............. 119
7.8 Support for testing binary compatibility............... ... ... 120
7.9 Support for torture testing using multiple options ............ 121
7.10 Support for testing GIMPLE passes......................... 122
7.11 Support for testing RTL passes .........ocoviiiiieiiiia.. 122
Option specification files..................... 125
8.1 Option file format........ ... .. 125
8.2 Option Properties . ........ueeeiii e 127
Passes and Files of the Compiler ........... 135
9.1 Parsing Pass .. ..vttnttt et e 135
9.2 GImplification pass. ........oouiiiiii 136
9.3 Pass Manager....... ... e 136
9.4 Inter-procedural optimization passes.............covvveeiin.n. 137
9.4.1 Small TPA Passes. . ..oovuriteeii i 137
9.4.2 Regular IPA passes..... ..o, 138
9.4.3 Late TPA passes......oouiiiiii e 140
0.5 Tree SSA PaSSES ..ttt ettt 140
9.6 RIL PaSSES « o oottt e 147
9.7 Optimization info......... ... 151
9.7.1 Dump Setup .. .ovvviii i 151
9.7.2  Optimization groups ..........couiuiiieiiiieinieean. 151
9.7.3 Dump files and streams . ............. . i 152
9.7.4 Dump output verbosity ................ 152
9.7.5  DUMP tyPeS. o 152

9.7.6 Dump examples....... ...t 153



vi GNU Compiler Collection (GCC) Internals

10 Sizes and offsets as runtime invariants.... 155

10.1 Overview of poly_int .........ooiiuiiiiiiiiiiiiiinanenn 155
10.2  Consequences of using poly_int ..............cooviieen... 156
10.3 Comparisons involving poly_int............... ... ......... 157
10.3.1 Comparison functions for poly_int .................... 157
10.3.2 Properties of the poly_int comparisons................ 158
10.3.3 Comparing potentially-unordered poly_ints............ 158
10.3.4 Comparing ordered poly_ints...............c...ouet.. 159
10.3.5 Checking for a poly_int marker value ................. 159
10.3.6 Range checks on poly_ints............... ..., 160
10.3.7  Sorting poLly_ints .......coueiiuiiiiiiniii .. 161
10.4  Arithmetic on poly_ints ...........ooiiiiiiiiiiiiiiienno... 161
10.4.1 Using poly_int with C+4+ arithmetic operators........ 161
10.4.2 wi arithmetic on poly_ints......... ... ..., 162
10.4.3 Division of poly_ints.........c.coiiiiiiiiiiiiii .. 162
10.4.4 Other poly_int arithmetic............. ... ... ... ..... 163
10.5 Alignment of poly_ints .......coviuiiiiiiiiiiiieannn.. 163
10.6 Computing bounds on poly_ints ............ccovieveinnn... 165
10.7 Converting poly_ints ........cuuvuiiiiiiie i, 165
10.8 Miscellaneous poly_int routines................. ... .. 167
10.9 Guidelines for using poly_int ...........ccoiiiiiiiiia.... 167
11 GENERIC.............. ... ... .......... 169
11.1 Deficiencies . . ..ot 169
11.2 0 OVEIVIEW ..ttt e e 169
T1.2.1  Trees « o oot e 170
11.2.2 Identifiers. ... ..o 171
11.2.3  Containers........ooiuuiiii e 171
S T I 0P 171
11.4 Declarations . ........c.oouuuiini e 176
11.4.1 Working with declarations ...................... ... ... 176
11.4.2 Internal structure........... ... ..., 178
11.4.2.1 Current structure hierarchy ....................... 178
11.4.2.2 Adding new DECL node types .................... 179

11.5  Attributes in trees . ....o.vv e 180
11.6  EXPressions. .. ...ttt 181
11.6.1 Constant exXpressions. . ..........eeeiieennieeennnn... 181
11.6.2 References to storage. ..., 183
11.6.3 Unary and Binary Expressions ......................... 185
11.6.4  VeCtOrs . ..ot e 192
11.7  Statements .. ...oon et e 195
11.7.1 Basic Statements............. . i 195
11.7.2  BloCKS ..o oot 197
11.7.3 Statement Sequences...............coiiiiiiiiiiiiii... 197
11.7.4 Empty Statements.............ccoiiiiiiiiiii.. 198
1175 JUMDS . o oottt 198
11.7.6  Cleanups. . .ottt e et 198

1177 OpenMP. ..o o 199



12

11.7.8 OpenACC .. ... 201
11.8  Functions. ... ..o 202
11.8.1 Function Basics.........oooiiiiiii 202
11.8.2 Function Properties................ooiiiiiiiii i 203
11.9 Language-dependent trees..............ooiiiiiiiiiiiean.. 204
11,10 Cand CH+ Trees .. ovve et 204
11.10.1  Types for CH4 .o 205
11.10.2  NaAMESPACES « . vt vttt ettt 207
11.10.3  Classes . vvv vttt 208
11.10.4 Functions for C+4 ... .o 210
11.10.5 Statements for Cand C++....... ...t 212
11.10.6  CH+4 EXPressions .. .....ouuueee et 215
GIMPLE ......... ... 217
12.1 Tuple representation ......... ... 218
12.1.1 gimple (gshase).........ovvuiiiiiiiiiiiiiiii 218
12.1.2 gimple_statement_with_ops...................oo.... 219
12.1.3 gimple_statement_with_memory_ops.................. 219
12.2  Class hierarchy of GIMPLE statements...................... 220
12.3 GIMPLE instruction set ..., 223
12.4  Exception Handling......... ... .. . i i, 223
12,5 TempPOTaries . . oo vttt ettt 224
12.6 Operands. ... ..ottt 224
12.6.1 Compound Expressions .............cooiiiiiiiiiii.. 225
12.6.2 Compound Lvalues. ..., 225
12.6.3 Conditional Expressions............c..ooooiiiiiiii.. 225
12.6.4 Logical Operators. .........ovuriieiiieeiieennnnn.n. 225
12.6.5 Manipulating operands................coiiiiiiiiian. 225
12.6.6 Operand vector allocation.............................. 226
12.6.7 Operand validation ............. ... ..o .. 227
12.6.8 Statement validation............. ... il 227
12.7 Manipulating GIMPLE statements.......................... 228
12.7.1  ComIMON ACCESSOTS - . .« vttt e et e e eeiee e 228
12.8 Tuple specific accessors . ......oviii i 230
12.8.1 GIMPLE _ASM. ...ttt 230
12.8.2 GIMPLE _ASSIGN ...ttt 231
12.8.3 GIMPLE_BIND ...ttt ittt i ie i 233
12.8.4 GIMPLE_CALL ..\ttt ittt e e 234
12.8.5 GIMPLE _CATCH ...ttt e 235
12.8.6 GIMPLE_COND . ...ttt ettt e 236
12.8.7 GIMPLE DEBUG .. ...ttt 237
12.8.8 GIMPLE_EH_FILTER.........coiiuiiiiiieiiieiaenannn. 238
12.8.9 GIMPLE _LABEL ... ...ttt i 239
12.8.10 GIMPLE_GOTO ... oottt e 239
12.8.11 GIMPLE_NOP. ..ttt et 239
12.8.12 GIMPLE_OMP_ATOMIC_LOAD ......oitiiiiiinnneeeennn. 239
12.8.13 GIMPLE_OMP_ATOMIC_STORE...........ccoiiiineinn.... 240

12.8.14 GIMPLE_OMP_CONTINUE......coviiiiiiiiiiieeaann. 240

vii



viii

GNU Compiler Collection (GCC) Internals
12.8.15 GIMPLE_OMP_CRITICAL......cotiiittiinnneeeeennnnnnn 241
12.8.16 GIMPLE_OMP_FOR.. ...\ttt 241
12.8.17 GIMPLE_OMP_MASTER ......otittiiiiiieeee e 242
12.8.18 GIMPLE_OMP_ORDERED .........ccuuuiiiiinneennnannnn. 242
12.8.19 GIMPLE_OMP_PARALLEL.......tttttiiianeeeaannnnnnn 243
12.8.20 GIMPLE_OMP_RETURN .......cciniiitiineiiineennnnn.. 244
12.8.21 GIMPLE_OMP_SECTION .... ...ttt 244
12.8.22 GIMPLE_OMP_SECTIONS . ... ..ottt 244
12.8.23 GIMPLE _OMP_SINGLE .......ccutuitiiiieiineeennnn.. 245
12.8.24 GIMPLE _PHI. ...ttt 245
12.8.25  GIMPLE _RESK ...ttt i eaie e 246
12.8.26 GIMPLE_RETURN .. ...ttt 246
12.8.27 GIMPLE_SWITCH ... ...'uuiiietettt i, 246
12.8.28 GIMPLE _TRY. ...ttt 247
12.8.29 GIMPLE_WITH_CLEANUP_EXPR............ccoiiiiinn.... 247
12.9 GIMPLE SEqUeNCES . . ...ttt et e e 248
12.10  Sequence iterators ... .........ueemiit e, 249
12.11 Adding a new GIMPLE statement code.................... 252
12.12 Statement and operand traversals.......................... 253

13 Analysis and Optimization of GIMPLE tuples

............................................... 255
13,1 Annotations .........oiiiiii i e 255
13.2 SSA Operands . .....ooueiin i e 255

13.2.1 Operand Iterators And Access Routines................ 257
13.2.2 Immediate Uses...... .o 259
13.3 Static Single Assignment........... ... . it 260
13.3.1 Preserving the SSA form............. ... ... ... . ..... 261
13.3.2 Examining SSA_NAME nodes ..........ccovuiiieninea.n. 263
13.3.3 Walking the dominator tree............................ 263
13.4 Alias analysis. ... ..o 264
13.5 Memory model ........... 265
14 RTL Representation........................ 267
14.1 RTL Object Types. ...ouuuiiii e 267
14.2 RTL Classes and Formats.............. ... oot 268
14.3 Access to Operands..........c.ooviiiiiiiii .. 270
14.4  Access to Special Operands ..., 271
14.5 Flags in an RTL Expression............coooiiiiiiiiii ... 274
14.6  Machine Modes...... ... 279
14.7 Constant Expression Types ........ccoovviiiiiiiiininn... 286
14.8 Registers and Memory ..., 290
14.9 RTL Expressions for Arithmetic............. ... .. ... . ..., 296
14.10 Comparison Operations. .........c...o.eeiiiiiieiiiieennn.. 300
1411 Bit-Fields . ..o 301
14.12 Vector Operations ............ooiiiiiiiinaaaan. 302

14.13  CONVETSIONS . o v e e et et e e e e e e e 302



14.14 Declarations........ ..o 304
14.15 Side Effect Expressions ..., 304
14.16 Embedded Side-Effects on Addresses....................... 310
14.17 Assembler Instructions as Expressions...................... 311
14.18 Variable Location Debug Information in RTL .............. 311
1419 InSIS . oot 312
14.20 RTL Representation of Function-Call Insns................. 320
14.21  On-the-Side SSA Form for RTL............................ 321
14.21.1 Using RTL SSA in apass.....ccoviuiiiiiniennnnann.. 321
14.21.2 RTL SSA Instructions ............cooiiiiiiiiiani . 322
14.21.3 RTL SSA Basic Blocks. ... ... 323
14.21.4 RTL SSA Resources ........oviuuiieiiiinaniinaann.. 323
14.21.5 RTL SSA Register and Memory Accesses.............. 324
14.21.6  RTL SSA Phi Nodes.......ooviiiiiiiiiiiiia. 324
14.21.7 RTL SSA Access Lists . ....coviiiiiii i 325
14.21.8 Using the RTL SSA framework to change instructions.. 327
14.21.8.1 Changing One RTL SSA Instruction.............. 327
14.21.8.2 Changing Multiple RTL SSA Instructions ........ 329

14.22  Structure Sharing Assumptions ............................ 330
14.23 Reading RTL ... ... 331
15 Control Flow Graph........................ 333
15.1 Basic Blocks. ... ... 333
152 BAZOS v 335
15.3  Profile information.......... .. ... . 338
15.4 Maintaining the CFG ... ... . ... o i i 339
15.5 Liveness information......... ... ... ... i 341

16 Analysis and Representation of Loops .... 343

16.1
16.2
16.3
16.4
16.5
16.6
16.7
16.8

Loop representation............coooiiiiiiiiiiiiiiiiiii, 343
Loop qUerying . ... 345
Loop manipulation............ ..o i i 346
Loop-closed SSA form ......... ..o 346
Scalar evolutions. .. ...t 347
IVanalysison RTL ... ... i 348
Number of iterations analysis ............. ...t 348

Data Dependency Analysis..........ccoiiiiiiiiinnnnn... 350

ix



GNU Compiler Collection (GCC) Internals

X
17 Machine Descriptions....................... 353
17.1 Overview of How the Machine Description is Used........... 353
17.2  Everything about Instruction Patterns ................... ... 353
17.3 Example of define_insn .............coiiiiiiiiiiiiii... 355
17.4 RTL Template. ... 355
17.5 Output Templates and Operand Substitution................ 359
17.6 C Statements for Assembler Output......................... 360
17.7 Predicates .. ... ..o e 362
17.7.1 Machine-Independent Predicates ....................... 362
17.7.2 Defining Machine-Specific Predicates ................... 364
17.8 Operand Constraints. ............c.ouiiiiieiiiieiiieaan. 366
17.8.1 Simple Constraints......... ..o, 366
17.8.2 Multiple Alternative Constraints ....................... 371
17.8.3 Register Class Preferences............. ... ... ... ... 372
17.8.4 Constraint Modifier Characters......................... 372
17.8.5 Constraints for Particular Machines .................... 373
17.8.6 Disable insn alternatives using the enabled attribute... 404
17.8.7 Defining Machine-Specific Constraints.................. 405
17.8.8 Testing constraints from C......... ... ... ... ... .... 408
17.9 Standard Pattern Names For Generation.................... 409
17.10 When the Order of Patterns Matters....................... 455
17.11 Interdependence of Patterns ............ .. ... .. ... . ..., 455
17.12 Defining Jump Instruction Patterns........................ 456
17.13 Defining Looping Instruction Patterns................... ... 456
17.14 Canonicalization of Instructions............................ 458
17.15 Defining RTL Sequences for Code Generation.............. 460
17.16 Defining How to Split Instructions ......................... 463
17.17 Including Patterns in Machine Descriptions................. 468
17.17.1 RTL Generation Tool Options for Directory Search.... 468
17.18 Machine-Specific Peephole Optimizers...................... 469
17.18.1 RTL to Text Peephole Optimizers..................... 469
17.18.2 RTL to RTL Peephole Optimizers..................... 471
17.19 Instruction Attributes ......... ... ... . L. 473
17.19.1 Defining Attributes and their Values .................. 473
17.19.2  Attribute Expressions...........cooiiiiiiiiiiiii... 475
17.19.3 Assigning Attribute Values to Insns................... 477
17.19.4 Example of Attribute Specifications................... 479
17.19.5 Computing the Length of an Insn..................... 479
17.19.6 Constant Attributes ............. ... ... L. 481
17.19.7 Mnemonic Attribute.............. ... ... .. L 481
17.19.8 Delay Slot Scheduling............. ... i, 481
17.19.9 Specifying processor pipeline description .............. 482
17.20 Conditional Execution ........... ..., 488
17.21 RTL Templates Transformations........................... 489
17.21.1 define_subst Example................ ... . ... ..., 490
17.21.2 Pattern Matching in define_subst ................... 491
17.21.3 Generation of output template in define_subst....... 492

17.22 Constant Definitions. ......ooviiiii i 492



17.23 Tterators. .. ..o 494
17.23.1 Mode Iterators. ...t 494
17.23.1.1 Defining Mode Iterators.............. ... ... .... 495
17.23.1.2 Substitution in Mode Iterators................... 495
17.23.1.3 Mode Iterator Examples ......................... 496
17.23.2 Code Iterators . ... 496
17.23.3 Int Iterators ...... ... 498
17.23.4 Subst Iterators...... ..ot 499
17.23.5 Parameterized Names.............oiiiiiiinnen... 499

18 Target Description Macros and Functions

............................................... 503
18.1 The Global targetm Variable ............. ... ... ... ... .. 503
18.2 Controlling the Compilation Driver, ‘gec’ ................... 504
18.3 Run-time Target Specification............... ... ... ... .... 510
18.4 Defining data structures for per-function information. ....... 513
18.5 Storage Layout ...... ..ot 514
18.6 Layout of Source Language Data Types..................... 524
18.7 Register Usage......ovinnnniiiii e 529

18.7.1 Basic Characteristics of Registers....................... 529
18.7.2  Order of Allocation of Registers..................... ... 531
18.7.3 How Values Fit in Registers................. ... ..., 532
18.7.4 Handling Leaf Functions ............ ... .. ... ... ... 534
18.7.5 Registers That Form a Stack...................... ..., 535
18.8 Register Classes ... ..ot 536
18.9 Stack Layout and Calling Conventions ...................... 546
18.9.1 Basic Stack Layout..............ooiiiiiiiiii 546
18.9.2 Exception Handling Support ............. ...t 550
18.9.3 Specifying How Stack Checking is Done ................ 552
18.9.4 Registers That Address the Stack Frame ............... 554
18.9.5 Eliminating Frame Pointer and Arg Pointer ............ 557
18.9.6 Passing Function Arguments on the Stack.............. 558
18.9.7 Passing Arguments in Registers ........................ 560
18.9.8 How Scalar Function Values Are Returned.............. 568
18.9.9 How Large Values Are Returned ....................... 570
18.9.10 Caller-Saves Register Allocation....................... 572
18.9.11 Function Entry and Exit........... ... oL 572
18.9.12 Generating Code for Profiling......................... 575
18.9.13 Permitting tail calls.............. ... it 576
18.9.14 Shrink-wrapping separate components................. 77
18.9.15 Stack smashing protection ......... ... ... ... ... L 578
18.9.16 Miscellaneous register hooks .......................... 578
18.10 Implementing the Varargs Macros.......................... 579
18.11 Support for Nested Functions.............................. 581
18.12 Implicit Calls to Library Routines.......................... 584
18.13 Addressing Modes ... 586
18.14 Anchored Addresses ........oouiiiiiii i 596

18.15 Condition Code Status.......cooviiii i 596

xi



xii GNU Compiler Collection (GCC) Internals

18.15.1 Representation of condition codes using registers . ... .. 597
18.16 Describing Relative Costs of Operations.................... 599
18.17 Adjusting the Instruction Scheduler........................ 606
18.18 Dividing the Output into Sections (Texts, Data, ...)....... 614
18.19 Position Independent Code ...t 619
18.20 Defining the Output Assembler Language .................. 620

18.20.1 The Overall Framework of an Assembler File.......... 620

18.20.2 Output of Data ... 623

18.20.3 Output of Uninitialized Variables ..................... 626

18.20.4 Output and Generation of Labels ..................... 627

18.20.5 How Initialization Functions Are Handled ............. 635

18.20.6 Macros Controlling Initialization Routines............. 637

18.20.7 Output of Assembler Instructions ..................... 639

18.20.8 Output of Dispatch Tables............... .. ... ... 643

18.20.9 Assembler Commands for Exception Regions.......... 644

18.20.10 Assembler Commands for Alignment................. 647
18.21 Controlling Debugging Information Format................. 648

18.21.1 Macros Affecting All Debugging Formats.............. 648

18.21.2  Specific Options for DBX Output ..................... 649

18.21.3 Open-Ended Hooks for DBX Format.................. 651

18.21.4 File Names in DBX Format........................... 651

18.21.5 Macros for DWARF Output................. ... ... 652

18.21.6 Macros for VMS Debug Format ....................... 654

18.21.7 Macros for CTF Debug Format .................... ... 655

18.21.8 Macros for BTF Debug Format ....................... 655
18.22  Cross Compilation and Floating Point...................... 655
18.23 Mode Switching Instructions............. ... ... L. 656
18.24 Defining target-specific uses of __attribute__............. 657
18.25 Emulating TLS ... .. o 661
18.26  Defining coprocessor specifics for MIPS targets. ............ 662
18.27 Parameters for Precompiled Header Validity Checking...... 662
18.28 CH-+ ABI parameters. ...t 663
18.29 D ABI parameters . ........ouueeiueeie e, 664
18.30 Adding support for named address spaces.................. 665
18.31 Miscellaneous Parameters............ .. ...t 667

19 Host Configuration ......................... 691
19.1 Host COmMmON . . ...ovt e e 691
19.2 Host Filesystem. ... i 692
19.3  HoSt MiSC . .vvve e e e 693

20 Makefile Fragments......................... 695
20.1 Target Makefile Fragments..........................ou... 695
20.2 Host Makefile Fragments..................o.oiiiiiit, 698

21 collect2 ... 699



22 Standard Header File Directories.......... 701
23 Memory Management and Type Information
............................................... 703
23.1 The Inside of @ GTY((O)) +ovviniii i 704
23.2  Support for inheritance ............. ... ... . e 708
23.3 Support for user-provided GC marking routines ............. 709
23.3.1 User-provided marking routines for template types...... 709
23.4 Marking Roots for the Garbage Collector.................... 710
23.5  Source Files Containing Type Information................... 711
23.6 How to invoke the garbage collector......................... 711
23.7 Troubleshooting the garbage collector ....................... 712
24 Plugins.......... ... 713
24.1 Loading Plugins ... 713
24.2 Plugin APL. ... . 713
24.2.1 Plugin license check......... ... ... .. L 713
24.2.2  Plugin initialization........... ... . oo i 714
24.2.3 Plugin callbacks........ ... i 715
24.3 Interacting with the pass manager........................... 716
24.4 Interacting with the GCC Garbage Collector ................ 717
24.5 Giving information about a plugin ............... ... ... ... 717
24.6 Registering custom attributes or pragmas ................... 718
24.7 Recording information about pass execution................. 718
24.8 Controlling which passes are being run...................... 719
24.9 Keeping track of available passes............................ 719
24.10 Building GCC plugins ........c.cooviiiiiiiiiiiii .. 719
25 Link Time Optimization.................... 721
25.1 Design Overview . ......o.uueeinie et 721
25.1.1 LTO modes of operation ...............covvveeiiiiinn.. 722
25.2 LTO file SeCtionsS. .. ...ooiiiii i 722
25.3 Using summary information in IPA passes................... 724
25.3.1 Virtual clones...........oooiiiiiie . 725
25.3.2 TPA references . ......o.vvuii 726
25.3.3 Jump functions ......... ... 726
25.4 Whole program assumptions, linker plugin and symbol visibilities
.............................................................. 726
25.5 Internal flags controlling 1tol............. ... 728
26 Match and Simplify......................... 729
26.1 GIMPLE APT ... . 729

26.2 The Language ........ouuuiiini e 730

xiii



xiv GNU Compiler Collection (GCC) Internals

27 Static Analyzer ... 735
27.1 Analyzer Internals.......... ... i 735
27. 1.1 OVEIVIEW ottt e e e 735
27.1.2 Graphs . ... 736
27.1.3 State Tracking........ ..o 736
27.1.4 Region Model...... ... o i 738
27.1.5 Analyzer Paths ....... ... ... . 739
27.1.6  Limitations . ........ouuiitei i 740
27.2 Debugging the Analyzer ........ ... .. .. ... . L. 740
27.2.1 Special Functions for Debugging the Analyzer.......... 740
27.2.2  Other Debugging Techniques............... ... ... 742
28 User Experience Guidelines................ 743
28.1 Guidelines for Diagnostics............cooiiiiiiiiiiiii.. 743
28.1.1 Talk in terms of the user’'s code ........................ 743
28.1.2 Diagnostics are actionable........................ ... 743
28.1.3 The user’s attention is important....................... 743
28.1.4 Sometimes the user didn’t write the code............... 743
28.1.5 Precision of Wording . ..., 744
28.1.6 Try the diagnostic on real-world code................... 744
28.1.7 Make mismatches clear................ ..., 744
28.1.8 Location Information .............. ... ... ... . ..., 745
28.1.9 Coding Conventions. ............ccoviiiiiiiiieennee... 746
28.1.10 Group logically-related diagnostics.................... 47
28.1.11 QUOING vttt 747
28.1.12 Spelling and Terminology .......... ..o, 747
28.1.13 Fix-it hints .........o i 748
28.1.13.1 Fix-it hints should work.......................... 748
28.1.13.2 Express deletion in terms of deletion, not replacement
........................................................ 749
28.1.13.3 Multiple suggestions ..............ccoiiiia.. 750
28.2  Guidelines for Options ...t 750
Funding Free Software........................... 751
The GNU Project and GNU/Linux ............ 753
GNU General Public License ................... 755
GNU Free Documentation License ............. 767
ADDENDUM: How to use this License for your documents........ 774
Contributors to GCC............................ 775

Option Index .............. ... .. ... .. .......... 793



Concept Index

XV






Introduction 1

Introduction

This manual documents the internals of the GNU compilers, including how to port them
to new targets and some information about how to write front ends for new languages.
It corresponds to the compilers (GCC) version 12.2.0. The use of the GNU compilers is
documented in a separate manual. See Section “Introduction” in Using the GNU Compiler
Collection (GCC).

This manual is mainly a reference manual rather than a tutorial. It discusses how to con-
tribute to GCC (see Chapter 1 [Contributing|, page 3), the characteristics of the machines
supported by GCC as hosts and targets (see Chapter 2 [Portability], page 5), how GCC
relates to the ABIs on such systems (see Chapter 3 [Interface], page 7), and the character-
istics of the languages for which GCC front ends are written (see Chapter 5 [Languages],
page 59). It then describes the GCC source tree structure and build system, some of the
interfaces to GCC front ends, and how support for a target system is implemented in GCC.

Additional tutorial information is linked to from https://gcc.gnu.org/readings.html.


https://gcc.gnu.org/readings.html




Chapter 1: Contributing to GCC Development 3

1 Contributing to GCC Development

If you would like to help pretest GCC releases to assure they work well, current development
sources are available via Git (see https://gcc.gnu.org/git.html). Source and binary
snapshots are also available for F'TP; see https://gcc.gnu.org/snapshots.html.

If you would like to work on improvements to GCC, please read the advice at these URLs:

https://gcc.gnu.org/contribute.html
https://gcc.gnu.org/contributewhy.html

for information on how to make useful contributions and avoid duplication of effort. Sug-
gested projects are listed at https://gcc.gnu.org/projects/.


https://gcc.gnu.org/git.html
https://gcc.gnu.org/snapshots.html
https://gcc.gnu.org/contribute.html
https://gcc.gnu.org/contributewhy.html
https://gcc.gnu.org/projects/




Chapter 2: GCC and Portability 5

2 GCC and Portability

GCC itself aims to be portable to any machine where int is at least a 32-bit type. It aims
to target machines with a flat (non-segmented) byte addressed data address space (the code
address space can be separate). Target ABIs may have 8, 16, 32 or 64-bit int type. char
can be wider than 8 bits.

GCC gets most of the information about the target machine from a machine description
which gives an algebraic formula for each of the machine’s instructions. This is a very clean
way to describe the target. But when the compiler needs information that is difficult to
express in this fashion, ad-hoc parameters have been defined for machine descriptions. The
purpose of portability is to reduce the total work needed on the compiler; it was not of
interest for its own sake.

GCC does not contain machine dependent code, but it does contain code that depends on
machine parameters such as endianness (whether the most significant byte has the highest
or lowest address of the bytes in a word) and the availability of autoincrement addressing. In
the RTL-generation pass, it is often necessary to have multiple strategies for generating code
for a particular kind of syntax tree, strategies that are usable for different combinations of
parameters. Often, not all possible cases have been addressed, but only the common ones or
only the ones that have been encountered. As a result, a new target may require additional
strategies. You will know if this happens because the compiler will call abort. Fortunately,
the new strategies can be added in a machine-independent fashion, and will affect only the
target machines that need them.






Chapter 3: Interfacing to GCC Output 7

3 Interfacing to GCC Output

GCC is normally configured to use the same function calling convention normally in use
on the target system. This is done with the machine-description macros described (see
Chapter 18 [Target Macros], page 503).

However, returning of structure and union values is done differently on some target ma-
chines. As a result, functions compiled with PCC returning such types cannot be called
from code compiled with GCC, and vice versa. This does not cause trouble often because
few Unix library routines return structures or unions.

GCC code returns structures and unions that are 1, 2, 4 or 8 bytes long in the same
registers used for int or double return values. (GCC typically allocates variables of such
types in registers also.) Structures and unions of other sizes are returned by storing them
into an address passed by the caller (usually in a register). The target hook TARGET _STRUCT_
VALUE_RTX tells GCC where to pass this address.

By contrast, PCC on most target machines returns structures and unions of any size
by copying the data into an area of static storage, and then returning the address of that
storage as if it were a pointer value. The caller must copy the data from that memory area
to the place where the value is wanted. This is slower than the method used by GCC, and
fails to be reentrant.

On some target machines, such as RISC machines and the 80386, the standard system
convention is to pass to the subroutine the address of where to return the value. On these
machines, GCC has been configured to be compatible with the standard compiler, when
this method is used. It may not be compatible for structures of 1, 2, 4 or 8 bytes.

GCC uses the system’s standard convention for passing arguments. On some machines,
the first few arguments are passed in registers; in others, all are passed on the stack. It
would be possible to use registers for argument passing on any machine, and this would
probably result in a significant speedup. But the result would be complete incompatibility
with code that follows the standard convention. So this change is practical only if you
are switching to GCC as the sole C compiler for the system. We may implement register
argument passing on certain machines once we have a complete GNU system so that we
can compile the libraries with GCC.

On some machines (particularly the SPARC), certain types of arguments are passed “by
invisible reference”. This means that the value is stored in memory, and the address of the
memory location is passed to the subroutine.

If you use longjmp, beware of automatic variables. ISO C says that automatic variables
that are not declared volatile have undefined values after a longjmp. And this is all GCC
promises to do, because it is very difficult to restore register variables correctly, and one of
GCC’s features is that it can put variables in registers without your asking it to.






Chapter 4: The GCC low-level runtime library 9

4 The GCC low-level runtime library

GCC provides a low-level runtime library, ‘libgcc.a’ or ‘libgcc_s.so.1’ on some plat-
forms. GCC generates calls to routines in this library automatically, whenever it needs to
perform some operation that is too complicated to emit inline code for.

Most of the routines in libgcc handle arithmetic operations that the target processor
cannot perform directly. This includes integer multiply and divide on some machines, and all
floating-point and fixed-point operations on other machines. 1ibgcc also includes routines
for exception handling, and a handful of miscellaneous operations.

Some of these routines can be defined in mostly machine-independent C. Others must be
hand-written in assembly language for each processor that needs them.

GCC will also generate calls to C library routines, such as memcpy and memset, in some
cases. The set of routines that GCC may possibly use is documented in Section “Other
Builtins” in Using the GNU Compiler Collection (GCC).

These routines take arguments and return values of a specific machine mode, not a specific
C type. See Section 14.6 [Machine Modes], page 279, for an explanation of this concept. For
illustrative purposes, in this chapter the floating point type float is assumed to correspond
to SFmode; double to DFmode; and long double to both TFmode and XFmode. Similarly,
the integer types int and unsigned int correspond to SImode; long and unsigned long
to DImode; and long long and unsigned long long to TImode.

4.1 Routines for integer arithmetic

The integer arithmetic routines are used on platforms that don’t provide hardware support
for arithmetic operations on some modes.

4.1.1 Arithmetic functions

int __ashlsi3 (int a, int b) [Runtime Function]

long __ashldi3 (long a, int b) [Runtime Function]

long long __ashlti3 (long long a, int b) [Runtime Function]
These functions return the result of shifting a left by b bits.

int __ashrsi3 (int a, int b) [Runtime Function]

long __ashrdi3 (long a, int b) [Runtime Function]

long long __ashrti3 (long long a, int b) [Runtime Function]
These functions return the result of arithmetically shifting a right by b bits.

int __divsi3 (int a, int b) [Runtime Function]

long __divdi3 (long a, long b) [Runtime Function]

long long __divti3 (long long a, long long b) [Runtime Function]
These functions return the quotient of the signed division of a and b.

int __1shrsi3 (int a, int b) [Runtime Function]

long __1shrdi3 (long a, int b) [Runtime Function]

long long __lshrti3 (long long a, int b) [Runtime Function]

These functions return the result of logically shifting a right by b bits.



10 GNU Compiler Collection (GCC) Internals

int __modsi3 (int a, int b) [Runtime Function]

long __moddi3 (long a, long b) [Runtime Function]

long long __modti3 (long long a, long long b) [Runtime Function]
These functions return the remainder of the signed division of a and b.

int __mulsi3 (int a, int b) [Runtime Function]

long __muldi3 (long a, long b) [Runtime Function]

long long __multi3 (long long a, long long b) [Runtime Function]
These functions return the product of a and b.

long __negdi2 (long a) [Runtime Function]

long long __negti2 (long long a) [Runtime Function]
These functions return the negation of a.

unsigned int __udivsi3 (unsigned int a, unsigned int b) [Runtime Function]

unsigned long __udivdi3 (unsigned long a, unsigned long b) [Runtime Function]

unsigned long long __udivti3 (unsigned long long a, [Runtime Function]

unsigned long long b)
These functions return the quotient of the unsigned division of a and b.

unsigned long __udivmoddi4 (unsigned long a, unsigned long  [Runtime Function]
b, unsigned long *c)
unsigned long long __udivmodti4 (unsigned long long a, [Runtime Function]
unsigned long long b, unsigned long long *c)
These functions calculate both the quotient and remainder of the unsigned division
of a and b. The return value is the quotient, and the remainder is placed in variable
pointed to by c.

unsigned int __umodsi3 (unsigned int a, unsigned int b) [Runtime Function]
unsigned long __umoddi3 (unsigned long a, unsigned long b) [Runtime Function]
unsigned long long __umodti3 (unsigned long long a, [Runtime Function]

unsigned long long b)
These functions return the remainder of the unsigned division of a and b.

4.1.2 Comparison functions

The following functions implement integral comparisons. These functions implement a low-
level compare, upon which the higher level comparison operators (such as less than and
greater than or equal to) can be constructed. The returned values lie in the range zero
to two, to allow the high-level operators to be implemented by testing the returned result
using either signed or unsigned comparison.

int __cmpdi2 (long a, long b) [Runtime Function]
int __cmpti2 (long long a, long long b) [Runtime Function]
These functions perform a signed comparison of a and b. If a is less than b, they
return 0; if a is greater than b, they return 2; and if a and b are equal they return 1.

int __ucmpdi2 (unsigned long a, unsigned long b) [Runtime Function]
int __ucmpti2 (unsigned long long a, unsigned long long b) [Runtime Function]
These functions perform an unsigned comparison of a and b. If a is less than b, they
return 0; if a is greater than b, they return 2; and if a and b are equal they return 1.



Chapter 4: The GCC low-level runtime library 11

4.1.3 Trapping arithmetic functions

The following functions implement trapping arithmetic. These functions call the libc func-
tion abort upon signed arithmetic overflow.

int __absvsi2 (int a) [Runtime Function]

long __absvdi2 (long a) [Runtime Function]
These functions return the absolute value of a.

int __addvsi3 (int a, int b) [Runtime Function]

long __addvdi3 (long a, long b) [Runtime Function]
These functions return the sum of a and b; that is a + b.

int __mulvsi3 (int a, int b) [Runtime Function]

long __mulvdi3 (long a, long b) [Runtime Function]
The functions return the product of a and b; that is a * b.

int __negvsi2 (int a) [Runtime Function]

long __negvdi2 (long a) [Runtime Function]
These functions return the negation of a; that is -a.

int __subvsi3 (int a, int b) [Runtime Function]

long __subvdi3 (long a, long b) [Runtime Function]

These functions return the difference between b and a; that is a - b.

4.1.4 Bit operations

int
int
int

int
int
int

int
int

int
int
int

__clzsi2 (unsigned int a) [Runtime Function]
__clzdi2 (unsigned long a) [Runtime Function]
__clzti2 (unsigned long long a) [Runtime Function]

These functions return the number of leading 0-bits in a, starting at the most signif-
icant bit position. If a is zero, the result is undefined.

__ctzsi2 (unsigned int a) [Runtime Function]
__ctzdi2 (unsigned long a) [Runtime Function]
__ctzti2 (unsigned long long a) [Runtime Function]

These functions return the number of trailing 0-bits in a, starting at the least signif-
icant bit position. If a is zero, the result is undefined.

__ffsdi2 (unsigned long a) [Runtime Function]
__ffsti2 (unsigned long long a) [Runtime Function]
These functions return the index of the least significant 1-bit in a, or the value zero
if a is zero. The least significant bit is index one.

__paritysi2 (unsigned int a) [Runtime Function]
__paritydi2 (unsigned long a) [Runtime Function]
__parityti2 (unsigned long long a) [Runtime Function]

These functions return the value zero if the number of bits set in a is even, and the
value one otherwise.



12 GNU Compiler Collection (GCC) Internals

int __popcountsi2 (unsigned int a) [Runtime Function]
int __popcountdi2 (unsigned long a) [Runtime Function]
int __popcountti2 (unsigned long long a) [Runtime Function]

These functions return the number of bits set in a.

int32_t __bswapsi2 (int32_t a) [Runtime Function]
int64_t __bswapdi2 (int64-t a) [Runtime Function]
These functions return the a byteswapped.

4.2 Routines for floating point emulation

The software floating point library is used on machines which do not have hardware support
for floating point. It is also used whenever ‘-msoft-float’ is used to disable generation of
floating point instructions. (Not all targets support this switch.)

For compatibility with other compilers, the floating point emulation routines can be
renamed with the DECLARE_LIBRARY_RENAMES macro (see Section 18.12 [Library Calls]
page 584). In this section, the default names are used.

)

Presently the library does not support XFmode, which is used for long double on some
architectures.

4.2.1 Arithmetic functions

[Runtime Function]
double __adddf3 (double a, double b) [Runtime Function]
long double __addtf3 (long double a, long double b) [Runtime Function]
long double __addxf3 (long double a, long double b) [Runtime Function]

These functions return the sum of a and b.

float __addsf3 (float a, float b)

float __subsf3 (float a, float b) [Runtime Function]
double __subdf3 (double a, double b) [Runtime Function]
long double __subtf3 (long double a, long double b) [Runtime Function]
long double __subxf3 (long double a, long double b) [Runtime Function]

These functions return the difference between b and a; that is, a — b.

- [Runtime Function
double __muldf3 (double a, double b) [Runtime Function
long double __multf3 (long double a, long double b) [Runtime Function
long double __mulxf3 (long double a, long double b) [Runtime Function

These functions return the product of a and b.

float __mulsf3 (float a, float b)

]
]
]
]

float __divsf3 (float a, float b) [Runtime Function]
double __divdf3 (double a, double b) [Runtime Function]
long double __divtf3 (long double a, long double b) [Runtime Function]
long double __divxf3 (long double a, long double b) [Runtime Function]

These functions return the quotient of a and b; that is, a/b.

double __negdf2 (double a) [Runtime Function]

long double _negtf2 (long double a) [Runtime Function]

float __negsf2 (float a) [Runtime Function]



Chapter 4: The GCC low-level runtime library 13

long double __negxf2 (long double a) [Runtime Function]
These functions return the negation of a. They simply flip the sign bit, so they can
produce negative zero and negative NaN.

4.2.2 Conversion functions

- Runtime Function
long double __extendsftf2 (float a) Runtime Function

double __extendsfdf2 (float a) [ ]
[ ]
_extendsfxf2 (foat a) [Runtime Function]
[ ]
[ ]

long double _ (
long double __extenddftf2 (double a) Runtime Function
long double __extenddfxf2 (double a) Runtime Function

These functions extend a to the wider mode of their return type.

double __truncxfdf2 (long double a) [Runtime Function]
double __trunctfdf2 (long double a) [Runtime Function]
float __truncxfsf2 (long double a) [Runtime Function]
[ ]

|

float __trunctfsf2 (long double a) Runtime Function

float __truncdfsf2 (double a) [Runtime Function
These functions truncate a to the narrower mode of their return type, rounding toward
zZero.

int __fixsfsi (float a) [Runtime Function]

int __fixdfsi (double a) [Runtime Function]

int __fixtfsi (long double a) [Runtime Function]

int __fixxfsi (long double a) [Runtime Function]

These functions convert a to a signed integer, rounding toward zero.

long __fixsfdi (float a) [Runtime Function]

long __fixdfdi (double a) [Runtime Function]

long __fixtfdi (long double a) [Runtime Function]

long __fixxfdi (long double a) [Runtime Function]
These functions convert a to a signed long, rounding toward zero.

long long __fixsfti (float a) [Runtime Function]

long long __fixdfti (double a) [Runtime Function]

long long __fixtfti (long double a) [Runtime Function]

long long __fixxfti (long double a) [Runtime Function]
These functions convert a to a signed long long, rounding toward zero.

unsigned int __fixunssfsi (float a) [Runtime Function]
unsigned int __fixunsdfsi (double a) [Runtime Function]
unsigned int __fixunstfsi (long double a) [Runtime Function]
unsigned int __fixunsxfsi (long double a) [Runtime Function]

These functions convert a to an unsigned integer, rounding toward zero. Negative
values all become zero.

unsigned long __fixunssfdi (float a) [Runtime Function]
unsigned long __fixunsdfdi (double a) [Runtime Function]
unsigned long __fixunstfdi (long double a) [Runtime Function]



14 GNU Compiler Collection (GCC) Internals

unsigned long __fixunsxfdi (long double a) [Runtime Function]
These functions convert a to an unsigned long, rounding toward zero. Negative values
all become zero.

unsigned long long __fixunssfti (float a) [Runtime Function]
unsigned long long __fixunsdfti (double a) [Runtime Function]
unsigned long long __fixunstfti (long double a) [Runtime Function]
unsigned long long __fixunsxfti (long double a) [Runtime Function]

These functions convert a to an unsigned long long, rounding toward zero. Negative

values all become zero.
float __floatsisf (int i) [Runtime Function]
double __floatsidf (int i) [Runtime Function]
long double __floatsitf (int i) [Runtime Function]
long double __floatsixf (int i) [Runtime Function]
These functions convert i, a signed integer, to floating point.

float __floatdisf (long i) [Runtime Function]

double __floatdidf (long i) [Runtime Function]

long double __floatditf (long i) [Runtime Function]

long double __floatdixf (long i) [Runtime Function]
These functions convert i, a signed long, to floating point.

float __floattisf (long long 1) [Runtime Function]

double __floattidf (long long 1) [Runtime Function]

long double __floattitf (long long i) [Runtime Function]

long double __floattixf (long long i) [Runtime Function]
These functions convert i, a signed long long, to floating point.

float __floatunsisf (unsigned int i) [Runtime Function]
double __floatunsidf (unsigned int 1) [Runtime Function]
long double __floatunsitf (unsigned int i) [Runtime Function]
long double __floatunsixf (unsigned int i) [Runtime Function]

These functions convert i, an unsigned integer, to floating point.

float __floatundisf (unsigned long i) [Runtime Function]

double __floatundidf (unsigned long i) [Runtime Function]

long double __floatunditf (unsigned long i) [Runtime Function]

long double __floatundixf (unsigned long i) [Runtime Function]
These functions convert i, an unsigned long, to floating point.

float __floatuntisf (unsigned long long 1) [Runtime Function]
double __floatuntidf (unsigned long long i) [Runtime Function]
long double __floatuntitf (unsigned long long 1) [Runtime Function]

]

long double __floatuntixf (unsigned long long 1) [Runtime Function
These functions convert i, an unsigned long long, to floating point.



Chapter 4: The GCC low-level runtime library 15

4.2.3 Comparison functions

There are two sets of basic comparison functions.

int __cmpsf2 (float a, float b) [Runtime Function]
int __cmpdf2 (double a, double b) [Runtime Function]
int __cmptf2 (long double a, long double b) [Runtime Function]

These functions calculate a <=> b. That is, if a is less than b, they return —1; if
a is greater than b, they return 1; and if a and b are equal they return 0. If either
argument is NaN they return 1, but you should not rely on this; if NaN is a possibility,
use one of the higher-level comparison functions.

int __unordsf2 (float a, float b) [Runtime Function]
int __unorddf2 (double a, double b) [Runtime Function]
int __unordtf2 (long double a, long double b) [Runtime Function]

These functions return a nonzero value if either argument is NaN, otherwise 0.

There is also a complete group of higher level functions which correspond directly to
comparison operators. They implement the ISO C semantics for floating-point comparisons,
taking NaN into account. Pay careful attention to the return values defined for each set.
Under the hood, all of these routines are implemented as

if (__unordXf2 (a, b))
return E;
return __cmpXf2 (a, b);
where E is a constant chosen to give the proper behavior for NaN. Thus, the meaning
of the return value is different for each set. Do not rely on this implementation; only the
semantics documented below are guaranteed.

int __eqsf2 (float a, float b) [Runtime Function]

int __eqdf2 (double a, double b) [Runtime Function]

int __eqtf2 (long double a, long double b) [Runtime Function]
These functions return zero if neither argument is NalN, and a and b are equal.

int __nesf2 (float a, float b) [Runtime Function]

int __nedf2 (double a, double b) [Runtime Function]

int __netf2 (long double a, long double b) [Runtime Function]
These functions return a nonzero value if either argument is NaN, or if a and b are
unequal.

int __gesf2 (float a, float b) [Runtime Function]

int __gedf2 (double a, double b) [Runtime Function]

int __getf2 (long double a, long double b) [Runtime Function]

These functions return a value greater than or equal to zero if neither argument is
NaN, and a is greater than or equal to b.

int __1tsf2 (float a, float b) [Runtime Function]
int __1tdf2 (double a, double b) [Runtime Function]
int __1ttf2 (long double a, long double b) [Runtime Function]

These functions return a value less than zero if neither argument is NaN, and a is
strictly less than b.



16 GNU Compiler Collection (GCC) Internals

int __lesf2 (float a, float b) [Runtime Function]
int __ledf2 (double a, double b) [Runtime Function]
int __letf2 (long double a, long double b) [Runtime Function]

These functions return a value less than or equal to zero if neither argument is NaN,
and a is less than or equal to b.

int __gtsf2 (float a, float b) [Runtime Function]
int __gtdf2 (double a, double b) [Runtime Function]
int __gttf2 (long double a, long double b) [Runtime Function]

These functions return a value greater than zero if neither argument is NaN, and a is
strictly greater than b.

4.2.4 Other floating-point functions

float __powisf2 (float a, int b) [Runtime Function]

double __powidf2 (double a, int b) [Runtime Function]

long double __powitf2 (long double a, int b) [Runtime Function]

long double __powixf2 (long double a, int b) [Runtime Function]
These functions convert raise a to the power b.

complex float __mulsc3 (float a, float b, float c, float d) [Runtime Function]

complex double __muldc3 (double a, double b, double c, [Runtime Function]
double d)

complex long double __multc3 (long double a, long double [Runtime Function]

b, long double c, long double d)

complex long double __mulxc3 (long double a, long double [Runtime Function]
b, long double c, long double d)

These functions return the product of a 4+ ib and ¢ + id, following the rules of C99

Annex G.
complex float __divsc3 (float a, float b, float c, float d) [Runtime Function]
complex double __divdc3 (double a, double b, double c, [Runtime Function]
double d)

complex long double __divtc3 (long double a, long double [Runtime Function]
b, long double c, long double d)

complex long double __divxc3 (long double a, long double [Runtime Function]
b, long double c, long double d)

These functions return the quotient of a + ib and ¢ + id (i.e., (a+ ib)/(c + id)),
following the rules of C99 Annex G.

4.3 Routines for decimal floating point emulation

The software decimal floating point library implements IEEE 754-2008 decimal floating
point arithmetic and is only activated on selected targets.

The software decimal floating point library supports either DPD (Densely Packed Deci-
mal) or BID (Binary Integer Decimal) encoding as selected at configure time.



Chapter 4: The GCC low-level runtime library

4.3.1 Arithmetic functions

_Decimal32 __ (-Decimal32 a, _Decimal32 b)
_Decimal32 __bid_addsd3 (_Decimal32 a, -Decimal32 b)
_Decimal64 __dpd_adddd3 (-Decimal64 a, -Decimal64 b)
_Decimal64 __bid_adddd3 (-Decimal64 a, -Decimal64 b)
_Decimal128 __dpd_addtd3 (_Decimall28 a, -Decimall28 b)
_Decimall28 __bid_addtd3 (_Decimall28 a, _Decimall28 b)

These functions return the sum of a and b.

dpd_addsd3

_Decimal32 __dpd_subsd3 (_Decimal32 a, -Decimal32 b)
_Decimal32 __bid_subsd3 (_Decimal32 a, -Decimal32 b)
_Decimal64 __dpd_subdd3 (_Decimal64 a, -Decimal64 b)
_Decimal64 __bid_subdd3 (_Decimal64 a, -Decimal64 b)
_Decimal128 __dpd_subtd3 (_Decimall28 a, -Decimall28 b)
_Decimall28 __bid_subtd3 (_Decimall28 a, -Decimall28 b)

17

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function

]
]
]
]
]
]

These functions return the difference between b and a; that is, a — b.

_Decimal32 __dpd_mulsd3

_Decimal32 __bid_mulsd3

_Decimal64 __dpd_muldd3

_Decimal64 __bid_muldd3 (_Decimal64 a, -Decimal64 b)

_Decimall128 __dpd_multd3 (_Decimall28 a, -Decimall28 b)

_Decimall28 __bid_multd3 (_Decimall28 a, -Decimall28 b)
These functions return the product of a and b.

-Decimal32 a, _Decimal32 b)
_Decimal32 a, _Decimal32 b)
_Decimal64 a, _Decimal64 b)

A~ N S~

_Decimal32 __dpd_divsd3 (_Decimal32 a, -Decimal32 b)
_Decimal32 __bid_divsd3 (_Decimal32 a, _Decimal32 b)
_Decimal64 __dpd_divdd3 (_Decimal64 a, -Decimal64 b)
_Decimal64 __bid_divdd3 (-Decimal64 a, -Decimal64 b)
_Decimall128 __dpd_divtd3 (_Decimall28 a, -Decimall28 b)
_Decimall28 __bid_divtd3 (_Decimall28 a, -Decimall28 b)
These functions return the quotient of a and b; that is, a/b.

_Decimal32 __dpd_negsd2 (_Decimal32 a)
_Decimal32 __bid_negsd2 (_Decimal32 a)
_Decimal64 __dpd_negdd2 (_Decimal64 a)
_Decimal64 __bid_negdd2 (-Decimal64 a)
_Decimal128 __dpd_negtd2 (_Decimall28 a)
_Decimal128 __bid_negtd2 (_Decimall28 a)

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function

]
]
]
]
]
]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

These functions return the negation of a. They simply flip the sign bit, so they can

produce negative zero and negative NaN.
4.3.2 Conversion functions

_Decimal64 __dpd_extendsddd2 (_Decimal32 a)
_Decimal64 __bid_extendsddd2 (_Decimal32 a)
_Decimal128 __dpd_extendsdtd2 (_Decimal32 a)
_Decimall28 __bid_extendsdtd2 (_Decimal32 a)

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]



18 GNU Compiler Collection (GCC) Internals

Runtime Function
Runtime Function
Runtime Function
Runtime Function

_Decimall128 __dpd_extendddtd2 (_Decimal64 a) [ ]
[ ]
[ ]
[ ]
[Runtime Function]
[ ]
[ ]
[ ]

_Decimall28 __bid_extendddtd2 (_Decimal64 a)
_Decimal32 __dpd_truncddsd2 ecimal64 a)
ecimal64 a)

(
_Decimal32 __bid_truncddsd2 (
_Decimal32 __dpd_trunctdsd2 (_-Decimall28 a)
_Decimal32 __bid_trunctdsd2 (_Decimall28 a)
_Decimal64 __dpd_trunctddd2 (_Decimall28 a) Runtime Function
_Decimal64 __bid_trunctddd2 (_Decimall28 a) Runtime Function
These functions convert the value a from one decimal floating type to another.

_Decimal64 __dpd_extendsfdd (float a)
_Decimal64 __bid_extendsfdd (float a)
_Decimal128 __dpd_extendsftd (float a)
_Decimall28 __bid_extendsftd (float a)
_Decimall28 __dpd_extenddftd (double a)
_Decimall28 __bid_extenddftd (double a)
_Decimall128 __dpd_extendxftd (long double a)

_D
_D
_D
_D

Runtime Function

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
_Decimal128 __bid_extendxftd (long double a) [Runtime Function]
_Decimal32 __dpd_truncdfsd (double a) [Runtime Function]
_Decimal32 __bid_truncdfsd (double a) [Runtime Function]
_Decimal32 __dpd_truncxfsd (long double a) [Runtime Function]
[Runtime Function]

[Runtime Function]

[Runtime Function]

[Runtime Function]

[ ]

[ ]

]

(
(
_Decimal32 __bid_truncxfsd (long double a)
_Decimal32 __dpd_trunctfsd (long double a)
_Decimal32 __bid_trunctfsd (long double a)
_Decimal64 __dpd_truncxfdd (long double a)
_Decimal64 __bid_truncxfdd (long double a) Runtime Function
_Decimal64 __dpd_trunctfdd (long double a) Runtime Function
_Decimal64 __bid_trunctfdd (long double a) [Runtime Function
These functions convert the value of a from a binary floating type to a decimal floating
type of a different size.

float __dpd_truncddsf (_Decimal64 a)

float __bid_truncddsf (_Decimal64 a)

float __dpd_trunctdsf (_Decimall28 a)
float __bid_trunctdsf (_Decimall28 a)
double __dpd_extendsddf (-Decimal32 a)
double __bid_extendsddf (.Decimal32 a)
double __dpd_trunctddf (_Decimall28 a) Runtime Function
double __bid_trunctddf (_Decimall28 a) Runtime Function

[Runtime Function]
[ ]
[ ]
[ ]
[ ]
[ ]
==
long double __dpd_extendsdxf (_Decimal32 a) [Runtime Function]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]

Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function

long double __bid_extendsdxf (_Decimal32 a) Runtime Function
long double __dpd_extendddxf (_Decimal64 a) Runtime Function
long double __bid_extendddxf (_Decimal64 a) Runtime Function
long double __dpd_trunctdxf (_Decimall28 a) Runtime Function
long double __bid_trunctdxf (-Decimall28 a) Runtime Function
long double __dpd_extendsdtf (_Decimal32 a) Runtime Function
-Decimal32 a) Runtime Function
_Decimal64 a) Runtime Function

long double __bid_extendsdtf
long double __dpd_extendddtf

—_



Chapter 4: The GCC low-level runtime library

long double __bid_extendddtf (_Decimal64 a)
These functions convert the value of a from a decimal floating type to a binary floating
type of a different size.

_Decimal32 __dpd_extendsfsd (float a)

_Decimal64 __dpd_extenddfdd (double a)

(
_Decimal32 __bid_extendsfsd (float a)

(

(

_Decimal64 __bid_extenddfdd (double a)

_Decimall28 __dpd_extendtftd (long double a)

_Decimall128 __bid_extendtftd (long double a)

float __dpd_truncsdsf (_Decimal32 a)

float __bid_truncsdsf (_Decimal32 a)

double __dpd_truncdddf (-Decimal64 a)

double __bid_truncdddf (-Decimal64 a)

long double __dpd_trunctdtf (_Decimall28 a)

long double __bid_trunctdtf (_Decimall28 a)
These functions convert the value of a between decimal and binary floating types of
the same size.

int __dpd_fixsdsi (
int __bid_fixsdsi (
__dpd_fixddsi (
(
(

int

int __bid_fixddsi
int __dpd_fixtdsi
int __bid_fixtdsi

_Decimal32 a
_Decimal32 a
_Decimal64 a
_Decimal64 a

)
)
)
)

_Decimall28 a)
(-Decimall28 a)

These functions convert a to a signed integer.

long __dpd_fixsddi (
long __bid_fixsddi (
long __dpd_fixdddi (_Decimal64
long __bid_fixdddi (
long __dpd_fixtddi (
long __bid_fixtddi

_Decimal32
_Decimal32

_Decimal64

)
a)
a)
a)

_Decimall28 a)
(-Decimall28 a)

These functions convert a to a signed long.

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

int
int
int
int
int
int

__dpd_fixunssdsi (-Decimal32 a)
(-Decimal32 a)
(-Decimal64 a)
(-Decimal64 a)
(_Decimall28 a)
(-Decimall28 a)
These functions convert a to an unsigned integer. Negative values all become zero.

__bid_fixunssdsi
__dpd_fixunsddsi
__bid_fixunsddsi
__dpd_fixunstdsi
__bid_fixunstdsi

unsigned long __dpd_fixunssddi
unsigned long __bid_fixunssddi

unsigned long __bid_fixunsdddi

(
(
unsigned long __dpd_fixunsdddi (
(
(

unsigned long __dpd_fixunstddi

-Decimal32 a)
_Decimal32 a)
_Decimal64 a)
_Decimal64 a)
_Decimall28 a)

19
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]



20

GNU Compiler Collection (GCC) Internals

unsigned long __bid_fixunstddi (_Decimall28 a)
These functions convert a to an unsigned long. Negative values all become zero.

_Decimal32 __dpd_floatsisd
_Decimal32 __bid_floatsisd
_Decimal64 __dpd_floatsidd
_Decimal64 __bid_floatsidd

int 1)
int 1)
int 1)
int 1)

~ A~~~

_Decimall28 __dpd_floatsitd (int i)
_Decimall28 __bid_floatsitd (int i)
These functions convert i, a signed integer, to decimal floating point.

_Decimal32 __dpd_floatdisd (long i)
_Decimal32 __bid_floatdisd (long i)
_Decimal64 __dpd_floatdidd (long i)
_Decimal64 __bid_floatdidd (long i)

_Decimall28

dpd_floatditd (long 1)

_Decimall28 __bid_floatditd (long i)
These functions convert i, a signed long, to decimal floating point.

_Decimal32 __dpd_floatunssisd

_Decimal64 __dpd_floatunssidd

unsigned int i

unsigned int i

( )

_Decimal32 __bid_floatunssisd (unsigned int i)
( )
(

_Decimal64 __bid_floatunssidd

nsigned int 1)

u
_Decimall28 __dpd_floatunssitd (unsigned int 1)
_Decimall128 __bid_floatunssitd (unsigned int i)
These functions convert i, an unsigned integer, to decimal floating point.

_Decimal32 __dpd_floatunsdisd
_Decimal32 __bid_floatunsdisd

unsigned long 1)
unsigned long 1)
)

(
(

_Decimal64 __dpd_floatunsdidd (unsigned long i
(

_Decimal64 __bid_floatunsdidd (u
_Decimall128 __dpd_floatunsditd (unsigned long i)
_Decimall128 __bid_floatunsditd (unsigned long 1)

nsigned long 1)

[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

These functions convert i, an unsigned long, to decimal floating point.

4.3.3 Comparison functions

int
int
int
int
int
int

__dpd_unordsd?2
__bid_unordsd2
__dpd_unorddd?2
__bid_unorddd2
dpd_unordtd?2

(
(
(
(
(

-Decimal32 a, _Decimal32 b)
-Decimal32 a, _Decimal32 b)
_Decimal64 a, _Decimal64 b)
_Decimal64 a, _Decimal64 b)
_Decimall28 a, _Decimall28 b)

__bid_unordtd2 (_Decimall28 a, -Decimall28 b)
These functions return a nonzero value if either argument is NaN, otherwise 0.

Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function

[ ]
[ ]
[ ]
[ ]
[ ]
[ ]

There is also a complete group of higher level functions which correspond directly to
comparison operators. They implement the ISO C semantics for floating-point comparisons,
taking NaN into account. Pay careful attention to the return values defined for each set.
Under the hood, all of these routines are implemented as



Chapter 4: The GCC low-level runtime library 21

if (__bid_unordXd2 (a, b))
return E;
return __bid_cmpXd2 (a, b);

where E is a constant chosen to give the proper behavior for NaN. Thus, the meaning
of the return value is different for each set. Do not rely on this implementation; only the
semantics documented below are guaranteed.

int __dpd_eqsd2 (_Decimal32 a, _Decimal32 b) [Runtime Function]
int __bid_eqsd2 (_-Decimal32 a, _Decimal32 b) [Runtime Function]
int __dpd_eqdd2 (_Decimal64 a, _Decimal64 b) [Runtime Function]
int __bid_eqdd2 (_-Decimal64 a, Decimal64 b) [Runtime Function]
int __dpd_eqtd2 (_Decimall28 a, Decimall28 b) [Runtime Function]
int __bid_eqtd2 (_Decimall28 a, _Decimall28 b) [Runtime Function]

These functions return zero if neither argument is NalN, and a and b are equal.

Runtime Function
Runtime Function

int __dpd_nesd2 (_Decimal32 a, _Decimal32 b [ ]
[ ]
[Runtime Function]
[ ]
[ ]

]

(-D )
int __bid_nesd2 (_Decimal32 a, _Decimal32 b)
int __dpd_nedd2 (_Decimal64 a, _Decimal64 b)
int __bid_nedd2 (_Decimal64 a, _Decimal64 b)
int __dpd_netd2 (_Decimall28 a, _Decimall28 b)

Runtime Function
Runtime Function

int __bid_netd2 (_Decimall28 a, -Decimall28 b) [Runtime Function
These functions return a nonzero value if either argument is NaN, or if a and b are
unequal.

int __dpd_gesd2 (_Decimal32 a, _Decimal32 b) [Runtime Function]
int __bid_gesd2 (_Decimal32 a, _Decimal32 b) [Runtime Function]
int __dpd_gedd2 (-Decimal64 a, -Decimal64 b) [Runtime Function]
int __bid_gedd2 (_Decimal64 a, _Decimal64 b) [Runtime Function]
int __dpd_getd2 (_Decimall28 a, _Decimall28 b) [Runtime Function]
int __bid_getd2 (_Decimall28 a, -Decimall28 b) [Runtime Function]

These functions return a value greater than or equal to zero if neither argument is

NaN, and a is greater than or equal to b.

int __dpd_1tsd2 (_Decimal32 a, _Decimal32 b)
int __bid_1tsd2 (_Decimal32 a, _Decimal32 b)
)
)

( Runtime Function
(
int __dpd_1tdd2 (_Decimal64 a, -Decimal64 b
(
(

Runtime Function
Runtime Function
int __bid_1tdd2 (_Decimal64 a, _Decimal64 b Runtime Function
int __dpd_1ttd2 (_Decimall28 a, -Decimall28 b) Runtime Function
int __bid_1ttd2 (_Decimall28 a, -Decimall28 b) Runtime Function

These functions return a value less than zero if neither argument is NaN, and a is

strictly less than b.

[ ]
[ ]
[ ]
[ ]
[ ]
[ ]

int __dpd_lesd2 (_Decimal32 a, _Decimal32 b) [Runtime Function]
int __bid_lesd2 (_Decimal32 a, -Decimal32 b) [Runtime Function]
int __dpd_ledd2 (_Decimal64 a, _Decimal64 b) [Runtime Function]
int __bid_ledd2 (_Decimal64 a, Decimal64 b) [Runtime Function]
int __dpd_letd2 (_Decimall28 a, _Decimall28 b) [Runtime Function]



22 GNU Compiler Collection (GCC) Internals

int __bid_letd2 (_Decimall28 a, -Decimall28 b) [Runtime Function]
These functions return a value less than or equal to zero if neither argument is NaN,
and a is less than or equal to b.

int __dpd_gtsd2 (_Decimal32 a, _Decimal32 b
_Decimal32 a, _Decimal32 b

) Runtime Function
int __bid_gtsd2 )
_Decimal64 a, _Decimal64 b)
)

Runtime Function
Runtime Function

[ ]
[ ]
int __dpd_gtdd2 [ ]
[Runtime Function]
[ ]
[ ]

(
(
int __bid_gtdd2 (-Decimal64 a, -Decimal64 b
int __dpd_gttd2 (_Decimall28 a, -Decimall28 b) Runtime Function
int __bid_gttd2 (_Decimall28 a, Decimall28 b) Runtime Function
These functions return a value greater than zero if neither argument is NaN, and a is
strictly greater than b.

4.4 Routines for fixed-point fractional emulation

The software fixed-point library implements fixed-point fractional arithmetic, and is only
activated on selected targets.

For ease of comprehension fract is an alias for the _Fract type, accum an alias for
_Accum, and sat an alias for _Sat.

For illustrative purposes, in this section the fixed-point fractional type short fract is as-
sumed to correspond to machine mode QQmode; unsigned short fract to UQQmode; fract
to HQmode; unsigned fract to UHQmode; long fract to SQmode; unsigned long fract
to USQmode; long long fract to DQmode; and unsigned long long fract to UDQmode.
Similarly the fixed-point accumulator type short accum corresponds to HAmode;
unsigned short accum to UHAmode; accum to SAmode; unsigned accum to USAmode;
long accum to DAmode; unsigned long accum to UDAmode; long long accum to TAmode;
and unsigned long long accum to UTAmode.

4.4.1 Arithmetic functions

short fract __addqq3 (short fract a, short fract b) Runtime Function
fract __addhq3 (fract a, fract b) Runtime Function

[ ]
[ ]
_addsq3 (long fract a, long fract b) [Runtime Function]
[ ]

long fract _

long long fract __adddq3 (long long fract a, long long fract Runtime Function
b)

unsigned short fract __adduqq3 (unsigned short fract a, [Runtime Function]
unsigned short fract b)

unsigned fract __adduhq3 (unsigned fract a, unsigned fract [Runtime Function]
b)

unsigned long fract __addusq3 (unsigned long fract a, [Runtime Function]

unsigned long fract b)
unsigned long long fract __addudq3 (unsigned long long [Runtime Function]
fract a, unsigned long long fract b)
short accum __addha3 (short accum a, short accum b)
accum __addsa3 (accum a, accum b)
long accum __addda3 (long accum a, long accum b)
long long accum __addta3 (long long accum a, long long

accum b)

Runtime Function
Runtime Function
Runtime Function
Runtime Function

[ ]
[ ]
[ ]
[ ]



Chapter 4: The GCC low-level runtime library

unsigned short accum __adduha3 (unsigned short accum a,
unsigned short accum b)

unsigned accum __addusa3 (unsigned accum a, unsigned
accum b)

unsigned long accum __adduda3 (unsigned long accum a,
unsigned long accum b)

unsigned long long accum __adduta3 (unsigned long long
accum a, unsigned long long accum b)

These functions return the sum of a and b.

short fract __ssaddqq3 (short fract a, short fract b)

fract __ssaddhq3 (fract a, fract b)

long fract __ssaddsq3 (long fract a, long fract b)

long long fract __ssadddq3 (long long fract a, long long
fract b)

short accum __ssaddha3 (short accum a, short accum b)

accum __ssaddsa3 (accum a, accum b)

long accum __ssaddda3 (long accum a, long accum b)
long long accum __ssaddta3 (long long accum a, long long
accum b)

23

[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

These functions return the sum of a and b with signed saturation.

unsigned short fract __usadduqq3 (unsigned short fract a,
unsigned short fract b)

unsigned fract __usadduhq3 (unsigned fract a, unsigned
fract b)

unsigned long fract __usaddusq3 (unsigned long fract a,
unsigned long fract b)

unsigned long long fract __usaddudq3 (unsigned long
long fract a, unsigned long long fract b)

unsigned short accum __usadduha3 (unsigned short accum
a, unsigned short accum b)

unsigned accum __usaddusa3 (unsigned accum a, unsigned
accum b)

unsigned long accum __usadduda3 (unsigned long accum a,
unsigned long accum b)

unsigned long long accum __usadduta3 (unsigned long
long accum a, unsigned long long accum b)

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]

These functions return the sum of a and b with unsigned saturation.

short fract __subqq3 (short fract a, short fract b)

fract __subhq3 (fract a, fract b)

long fract __subsq3 (long fract a, long fract b)

long long fract __subdq3 (long long fract a, long long fract
b)

unsigned short fract __subuqq3 (unsigned short fract a,
unsigned short fract b)

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]



24 GNU Compiler Collection (GCC) Internals

unsigned fract __subuhq3 (unsigned fract a, unsigned fract
b)

unsigned long fract __subusq3 (unsigned long fract a,
unsigned long fract b)

unsigned long long fract __subudq3 (unsigned long long
fract a, unsigned long long fract b)

short accum __subha3 (short accum a, short accum b)

accum __subsa3 (accum a, accum b)

long accum __subda3 (long accum a, long accum b)

long long accum __subta3 (long long accum a, long long
accum b)

unsigned short accum __subuha3 (unsigned short accum a,
unsigned short accum b)

unsigned accum __subusa3 (unsigned accum a, unsigned
accum b)

unsigned long accum __subuda3 (unsigned long accum a,
unsigned long accum b)

unsigned long long accum __subuta3 (unsigned long long
accum a, unsigned long long accum b)

These functions return the difference of a and b; that is, a - b.

short fract

sssubqq3 (short fract a, short fract b)

fract __sssubhqg3 (fract a, fract b)

long fract __sssubsq3 (long fract a, long fract b)

long long fract __sssubdq3 (long long fract a, long long
fract b)

short accum __sssubha3 (short accum a, short accum b)

accum __sssubsa3 (accum a, accum b)

long accum __sssubda3 (long accum a, long accum b)
long long accum __sssubta3 (long long accum a, long long
accum b)

[Runtime Function]
[Runtime Function]
[Runtime Function]

Runtime Function
Runtime Function
Runtime Function
Runtime Function

[ ]
[ ]
[ ]
[ ]

[Runtime Function]
[Runtime Function]

[Runtime Function]

[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

These functions return the difference of a and b with signed saturation; that is, a -

b.

unsigned short fract __ussubuqq3 (unsigned short fract a,
unsigned short fract b)

unsigned fract __ussubuhq3 (unsigned fract a, unsigned
fract b)

unsigned long fract __ussubusq3 (unsigned long fract a,
unsigned long fract b)

unsigned long long fract __ussubudq3 (unsigned long
long fract a, unsigned long long fract b)

unsigned short accum __ussubuha3 (unsigned short accum
a, unsigned short accum b)

unsigned accum __ussubusa3 (unsigned accum a, unsigned
accum b)

unsigned long accum __ussubuda3 (unsigned long accum a,
unsigned long accum b)

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]



Chapter 4: The GCC low-level runtime library

unsigned long long accum __ussubuta3 (unsigned long
long accum a, unsigned long long accum b)

25

[Runtime Function]

These functions return the difference of a and b with unsigned saturation; that is, a

- b.

short fract __mulqq3 (short fract a, short fract b)

fract __mulhq3 (fract a, fract b)

long fract __mulsq3 (long fract a, long fract b)

long long fract __muldq3 (long long fract a, long long fract
b)

unsigned short fract __muluqq3 (unsigned short fract a,
unsigned short fract b)

unsigned fract __muluhq3 (unsigned fract a, unsigned fract
b)

unsigned long fract __mulusq3 (unsigned long fract a,
unsigned long fract b)

unsigned long long fract __muludq3 (unsigned long long
fract a, unsigned long long fract b)

short accum __mulha3 (short accum a, short accum b)

accum __mulsa3 (accum a, accum b)

long accum __mulda3 (long accum a, long accum b)

long long accum __multa3 (long long accum a, long long
accum b)

unsigned short accum __muluha3 (unsigned short accum a,
unsigned short accum b)

unsigned accum __mulusa3 (unsigned accum a, unsigned
accum b)

unsigned long accum __muluda3 (unsigned long accum a,
unsigned long accum b)

unsigned long long accum __muluta3 (unsigned long long
accum a, unsigned long long accum b)

These functions return the product of a and b.

short fract __ssmulqq3 (short fract a, short fract b)

fract __ssmulhq3 (fract a, fract b)

long fract __ssmulsq3 (long fract a, long fract b)

long long fract __ssmuldq3 (long long fract a, long long
fract b)

short accum __ssmulha3 (short accum a, short accum b)

accum __ssmulsa3 (accum a, accum b)

long accum __ssmulda3 (long accum a, long accum b)
long long accum __ssmulta3 (long long accum a, long long
accum b)

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]

[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

These functions return the product of a and b with signed saturation.



26 GNU Compiler Collection (GCC) Internals

unsigned short fract __usmuluqq3 (unsigned short fract a,
unsigned short fract b)

unsigned fract __usmuluhq3 (unsigned fract a, unsigned
fract b)

unsigned long fract __usmulusq3 (unsigned long fract a,
unsigned long fract b)

unsigned long long fract __usmuludq3 (unsigned long
long fract a, unsigned long long fract b)

unsigned short accum __usmuluha3 (unsigned short accum
a, unsigned short accum b)

unsigned accum __usmulusa3 (unsigned accum a, unsigned
accum b)

unsigned long accum __usmuluda3 (unsigned long accum a,
unsigned long accum b)

unsigned long long accum __usmuluta3 (unsigned long
long accum a, unsigned long long accum b)

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]

These functions return the product of a and b with unsigned saturation.

short fract __divqq3 (short fract a, short fract b)

fract __divhq3 (fract a, fract b)

long fract __divsq3 (long fract a, long fract b)

long long fract __divdq3 (long long fract a, long long fract
b)

short accum __divha3 (short accum a, short accum b)

accum __divsa3 (accum a, accum b)

long accum __divda3 (long accum a, long accum b)

long long accum __divta3 (long long accum a, long long
accum b)

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

These functions return the quotient of the signed division of a and b.

unsigned short fract __udivuqq3 (unsigned short fract a,
unsigned short fract b)

unsigned fract __udivuhq3 (unsigned fract a, unsigned fract
b)

unsigned long fract __udivusq3 (unsigned long fract a,
unsigned long fract b)

unsigned long long fract __udivudq3 (unsigned long long
fract a, unsigned long long fract b)

unsigned short accum __udivuha3 (unsigned short accum a,
unsigned short accum b)

unsigned accum __udivusa3 (unsigned accum a, unsigned
accum b)

unsigned long accum __udivuda3 (unsigned long accum a,
unsigned long accum b)

unsigned long long accum __udivuta3 (unsigned long long
accum a, unsigned long long accum b)

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]

These functions return the quotient of the unsigned division of a and b.



Chapter 4: The GCC low-level runtime library

short fract __ssdivqq3 (short fract a, short fract b)

fract __ssdivhqg3 (fract a, fract b)

long fract __ssdivsq3 (long fract a, long fract b)

long long fract __ssdivdq3 (long long fract a, long long
fract b)

short accum __ssdivha3 (short accum a, short accum b)

accum __ssdivsa3 (accum a, accum b)

long accum __ssdivda3 (long accum a, long accum b)
long long accum __ssdivta3 (long long accum a, long long
accum b)

27

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

These functions return the quotient of the signed division of a and b with signed

saturation.

unsigned short fract __usdivuqq3 (unsigned short fract a,
unsigned short fract b)

unsigned fract __usdivuhq3 (unsigned fract a, unsigned
fract b)

unsigned long fract __usdivusq3 (unsigned long fract a,
unsigned long fract b)

unsigned long long fract __usdivudq3 (unsigned long
long fract a, unsigned long long fract b)

unsigned short accum __usdivuha3 (unsigned short accum
a, unsigned short accum b)

unsigned accum __usdivusa3 (unsigned accum a, unsigned
accum b)

unsigned long accum __usdivuda3 (unsigned long accum a,
unsigned long accum b)

unsigned long long accum __usdivuta3 (unsigned long
long accum a, unsigned long long accum b)

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]

These functions return the quotient of the unsigned division of a and b with unsigned

saturation.

short fract __negqq2 (short fract a)

fract __neghq2 (fract a)

long fract __negsq2 (long fract a)

long long fract __negdq2 (long long fract a)

unsigned short fract __neguqq2 (unsigned short fract a)

unsigned fract __neguhq2 (unsigned fract a)

unsigned long fract __negusq2 (unsigned long fract a)

unsigned long long fract __negudq2 (unsigned long long
fract a)

short accum __negha?2 (short accum a)

accum __negsa2 (accum a)

long accum __negda2 (long accum a)

long long accum __negta2 (long long accum a)

unsigned short accum __neguha2 (unsigned short accum a)

unsigned accum __negusa2 (unsigned accum a)

unsigned long accum __neguda2 (unsigned long accum a)

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]



28 GNU Compiler Collection (GCC) Internals

unsigned long long accum __neguta2 (unsigned long long
accum a)

These functions return the negation of a.

short fract __ssnegqq2 (short fract a)

fract __ssneghq2 (fract a)

long fract __ssnegsq2 (long fract a)

long long fract __ssnegdq2 (long long fract a)
short accum __ssnegha?2 (short accum a)

accum __ssnegsa2 (accum a)

long accum __ssnegda2 (long accum a)

long long accum __ssnegta2 (long long accum a)

These functions return the negation of a with signed saturation.

unsigned short fract __usneguqq2 (unsigned short fract a)

unsigned fract __usneguhq2 (unsigned fract a)

unsigned long fract __usnegusq2 (unsigned long fract a)

unsigned long long fract __usnegudq2 (unsigned long
long fract a)

unsigned short accum
a)

unsigned accum __usnegusa2 (unsigned accum a)

unsigned long accum __usneguda?2 (unsigned long accum a)

unsigned long long accum __usneguta2 (unsigned long
long accum a)

__usneguha?2 (unsigned short accum

[Runtime Function]

Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function

[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

These functions return the negation of a with unsigned saturation.

short fract __ashlqq3 (short fract a, int b)

fract __ashlhq3 (fract a, int b)

long fract __ashlsq3 (long fract a, int b)

long long fract __ashldq3 (long long fract a, int b)

unsigned short fract __ashluqq3 (unsigned short fract a,
int b)

unsigned fract __ashluhq3 (unsigned fract a, int b)

unsigned long fract __ashlusq3 (unsigned long fract a, int
b)

unsigned long long fract
fract a, int b)

short accum __ashlha3 (short accum a, int b)

accum __ashlsa3 (accum a, int b)

long accum __ashlda3 (long accum a, int b)

long long accum __ashlta3 (long long accum a, int b)

unsigned short accum __ashluha3 (unsigned short accum a,
int b)

unsigned accum __ashlusa3 (unsigned accum a, int b)

unsigned long accum __ashluda3 (unsigned long accum a,

int b)

_ashludqg3 (unsigned long long

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]



Chapter 4: The GCC low-level runtime library

unsigned long long accum __ashluta3 (unsigned long long
accum a, int b)

These functions return the result of shifting a left by b bits.

short fract __ashrqq3 (short fract a, int b)

fract __ashrhq3 (fract a, int b)

long fract __ashrsq3 (long fract a, int b)

long long fract __ashrdq3 (long long fract a, int b)
short accum __ashrha3 (short accum a, int b)

accum __ashrsa3 (accum a, int b)

long accum __ashrda3 (long accum a, int b)

long long accum __ashrta3 (long long accum a, int b)

29
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

These functions return the result of arithmetically shifting a right by b bits.

unsigned short fract
int b)

unsigned fract __lshruhq3 (unsigned fract a, int b)

unsigned long fract __lshrusq3 (unsigned long fract a, int
b)

unsigned long long fract
fract a, int b)

unsigned short accum
int b)

unsigned accum __lshrusa3 (unsigned accum a, int b)

unsigned long accum __lshruda3 (unsigned long accum a,
int b)

unsigned long long accum
accum a, int b)

_1shruqqg3 (unsigned short fract a,

_1shrudqg3 (unsigned long long

_1lshruha3 (unsigned short accum a,

_1lshruta3 (unsigned long long

[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]

These functions return the result of logically shifting a right by b bits.

fract __ssashlhq3 (fract a, int b)

long fract __ssashlsq3 (long fract a, int b)

long long fract __ssashldq3 (long long fract a, int b)
short accum __ssashlha3 (short accum a, int b)

accum __ssashlsa3 (accum a, int b)

long accum __ssashlda3 (long accum a, int b)

long long accum __ssashlta3 (long long accum a, int b)

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

These functions return the result of shifting a left by b bits with signed saturation.

unsigned short fract
a, int b)

unsigned fract __usashluhq3 (unsigned fract a, int b)

unsigned long fract __usashlusq3 (unsigned long fract a,
int b)

unsigned long long fract
long fract a, int b)

unsigned short accum
a, int b)

_usashluqq3 (unsigned short fract

_usashludq3 (unsigned long

_usashluha3 (unsigned short accum

[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]

[Runtime Function]



30 GNU Compiler Collection (GCC) Internals

unsigned accum __usashlusa3 (unsigned accum a, int b) [Runtime Function]

unsigned long accum __usashluda3 (unsigned long accum [Runtime Function]
a, int b)
unsigned long long accum __usashluta3 (unsigned long [Runtime Function]

long accum a, int b)
These functions return the result of shifting a left by b bits with unsigned saturation.

4.4.2 Comparison functions

The following functions implement fixed-point comparisons. These functions implement a
low-level compare, upon which the higher level comparison operators (such as less than and
greater than or equal to) can be constructed. The returned values lie in the range zero
to two, to allow the high-level operators to be implemented by testing the returned result
using either signed or unsigned comparison.

Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function

int __cmpqq2 (short fract a, short fract b)

int __cmphq2 (fract a, fract b)

int __cmpsq2 (long fract a, long fract b)

int __cmpdq2 (long long fract a, long long fract b)

int __cmpuqq2 (unsigned short fract a, unsigned short fract b)

int __cmpuhq2 (unsigned fract a, unsigned fract b)

int __cmpusq2 (unsigned long fract a, unsigned long fract b)

int __cmpudq2 (unsigned long long fract a, unsigned long long

fract b)

int __cmpha2 (short accum a, short accum b) [Runtime Function]

int __cmpsa2 (accum a, accum b) [Runtime Function]
(Iong accum a, long accum b) [Runtime Function]
( [ ]

[ ]

[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]

int __cmpda2
int __cmpta2 (long long accum a, long long accum b) Runtime Function
Runtime Function

int __cmpuha?2 (unsigned short accum a, unsigned short accum

b)

int __cmpusa2 (unsigned accum a, unsigned accum b) [Runtime Function]

int __cmpuda2 (unsigned long accum a, unsigned long accum b)  [Runtime Function]

int __cmputa2 (unsigned long long accum a, unsigned long long [Runtime Function]
accum b)

These functions perform a signed or unsigned comparison of a and b (depending on
the selected machine mode). If a is less than b, they return 0; if a is greater than b,
they return 2; and if a and b are equal they return 1.

4.4.3 Conversion functions

Runtime Function
Runtime Function

Runtime Function
short accum __fractqgha (short fract a) Runtime Function

fract __fractqqhq2 (short fract a) [ ]
[ ]
e
accum __fractqqgsa (short fract a) [Runtime Function]
[ ]
[ ]
[ ]
[ ]

long fract __fractqqgsq2 (short fract a)
long long fract __fractqqdq2 (short fract a)

long accum __fractqqgda (short fract a) Runtime Function
long long accum __fractqqta (short fract a) Runtime Function
unsigned short fract __fractqquqq (short fract a) Runtime Function

Runtime Function

unsigned fract __fractqquhq (short fract a)



Chapter 4: The GCC low-level runtime library

unsigned long fract __fractqqusq (short fract a)
unsigned long long fract __fractqqudq (short fract a)
unsigned short accum __fractqquha (short fract a)
unsigned accum __fractqqusa (short fract a)

unsigned long accum __fractqquda (short fract a)
unsigned long long accum __fractqquta (short fract a)
signed char __fractqqqi (short fract a)

short __fractqqhi (short fract a)

int __fractqqsi (short fract a)

long __fractqqdi (short fract a)

long long __fractqqti (short fract a)

float __fractqqgsf (short fract a)

double __fractqqdf (short fract a)
short fract __fracthqqq2 (fract a)
long fract __fracthqgsq2 (fract a)

long long fract __fracthqdq2 (fract a)
short accum __fracthgha (fract a)
accum __fracthqgsa (fract a)

long accum __fracthqda (fract a)
long long accum __fracthqta (fract a)
unsigned short fract __fracthquqq (
unsigned fract __fracthquhq (fract a)
unsigned long fract __fracthqusq (fract a)
unsigned long long fract __fracthqudq (fract a)
unsigned short accum __fracthquha (fract a)
unsigned accum __fracthqusa (fract a)

unsigned long accum __fracthquda (fract a)
unsigned long long accum __fracthquta (fract a)
signed char __fracthqqi (fract a)

short __fracthqhi (fract a)

int __fracthqgsi (fract a)

long __fracthqdi (fract a)

long long __fracthqti (fract a)

float __fracthqgsf (fract a)

double __fracthqdf (fract a)

short fract __fractsqqq2 (long fract a)

fract __fractsqhq2 (long fract a)

long long fract __fractsqdq2 (long fract a)
short accum __fractsqgha (long fract a)

accum __fractsqgsa (long fract a)

long accum __fractsqda (long fract a)

long long accum __fractsqta (long fract a)
unsigned short fract __fractsquqq (long fract a)
unsigned fract __fractsquhq (long fract a)
unsigned long fract __fractsqusq (long fract a)
unsigned long long fract __fractsqudq (long fract a)

unsigned short accum __fractsquha (long fract a)

fract a)

31

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]



32 GNU Compiler Collection (GCC) Internals

_fractsqusa (long fract a)

_fractsquda (long fract a)

unsigned long long accum __fractsquta (long fract a)

signed char __fractsqqi (long fract a)

short __fractsqhi (long fract a)

int __fractsqgsi (long fract a)

long __fractsqdi (long fract a)

long long __fractsqti (long fract a)

float __fractsqsf (long fract a)

double __fractsqdf (long fract a)

short fract __fractdqqq2 (long long fract a)

fract __fractdqhq2 (long long fract a)

long fract __fractdgsq2 (long long fract a)

short accum __fractdgha (long long fract a)

accum __fractdgsa (long long fract a)

long accum __fractdqda (long long fract a)

long long accum __fractdqta (long long fract a)

unsigned short fract __fractdquqq (long long fract a)

unsigned fract __fractdquhq (long long fract a)

unsigned long fract __fractdqusq (long long fract a)

unsigned long long fract __fractdqudq (long long fract
)

unsigned short accum __fractdquha (long long fract a)

unsigned accum __fractdqusa (long long fract a)

unsigned long accum __fractdquda (long long fract a)

unsigned long long accum __fractdquta (long long fract
)

signed char __fractdqqi (long long fract a)

short __fractdghi (long long fract a)

int __fractdqgsi (long long fract a)

long __fractdqdi (long long fract a)

long long __fractdqti (long long fract a)

float __fractdqgsf (long long fract a)

double __fractdqdf (long long fract a)

short fract __fracthaqq (short accum a)

fract __fracthahq (short accum a)

long fract __fracthasq (short accum a)

long long fract __fracthadq (short accum a)

accum __fracthasa2 (short accum a)

long accum __fracthada2 (short accum a)

long long accum __fracthata2 (short accum a)

unsigned short fract __fracthauqq (short accum a)

unsigned fract __fracthauhq (short accum a)

unsigned long fract __fracthausq (short accum a)

unsigned long long fract __fracthaudq (short accum a)

unsigned short accum __fracthauha (short accum a)

unsigned accum __fracthausa (short accum a)

unsigned accum _
unsigned long accum _

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]



Chapter 4: The GCC low-level runtime library

unsigned long accum __fracthauda (short accum a)
unsigned long long accum __fracthauta (short accum a)
signed char __fracthaqi (short accum a)

short __fracthahi (short accum a)

int __fracthasi (short accum a)

long __fracthadi (short accum a)

long long __fracthati (short accum a)

float __fracthasf (short accum a)

double __fracthadf (short accum a)

short fract __fractsaqq (accum a)

fract __fractsahq (accum a)

long fract __fractsasq (accum a)

long long fract __fractsadq (accum a)

short accum __fractsaha2 (accum a)

long accum __fractsada2 (accum a)

long long accum __fractsata2 (accum a)
unsigned short fract __fractsauqq (accum a)
unsigned fract __fractsauhq (accum a)

unsigned long fract __fractsausq (accum a)
unsigned long long fract __fractsaudq (accum a)
unsigned short accum __fractsauha (accum a)
unsigned accum __fractsausa (accum a)

unsigned long accum __fractsauda (accum a)
unsigned long long accum __fractsauta (accum a)
signed char __fractsaqi (accum a)

short __fractsahi (accum a)

int __fractsasi (accum a)

long __fractsadi (accum a)

long long __fractsati (accum a)

float __fractsasf (accum a)

double __fractsadf (accum a)

short fract __fractdaqq (long accum a)

fract __fractdahq (long accum a)

long fract __fractdasq (long accum a)

long long fract __fractdadq (long accum a)

short accum __fractdaha2 (long accum a)

accum __fractdasa2 (long accum a)

long long accum __fractdata2 (long accum a)
unsigned short fract __fractdauqq (long accum a)
unsigned fract __fractdauhq (long accum a)
unsigned long fract __fractdausq (long accum a)
unsigned long long fract __fractdaudq (long accum a)
unsigned short accum __fractdauha (long accum a)
unsigned accum __fractdausa (long accum a)
unsigned long accum __fractdauda (long accum a)
unsigned long long accum __fractdauta (long accum a)
signed char __fractdaqi (long accum a)

33

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]



34 GNU Compiler Collection (GCC) Internals

short __fractdahi (long accum a)

int __fractdasi (long accum a)

long __fractdadi (long accum a)

long long __fractdati (long accum a)

float __fractdasf (long accum a)

double __fractdadf (long accum a)

short fract __fracttaqq (long long accum a)

fract __fracttahq (long long accum a)

long fract __fracttasq (long long accum a)

long long fract __fracttadq (long long accum a)

short accum __fracttaha2 (long long accum a)

accum __fracttasa2 (long long accum a)

long accum __fracttada2 (long long accum a)

unsigned short fract __fracttauqq (long long accum a)

unsigned fract __fracttauhq (long long accum a)

unsigned long fract __fracttausq (long long accum a)

unsigned long long fract __fracttaudq (long long accum
)

unsigned short accum __fracttauha (long long accum a)

unsigned accum __fracttausa (long long accum a)

unsigned long accum __fracttauda (long long accum a)

unsigned long long accum __fracttauta (long long accum
)

signed char __fracttaqi (long long accum a)

short __fracttahi (long long accum a)

int __fracttasi (long long accum a)

long __fracttadi (long long accum a)

long long __fracttati (long long accum a)

float __fracttasf (long long accum a)

double __fracttadf (long long accum a)

short fract __fractuqqqq (unsigned short fract a)

fract __fractuqqghq (unsigned short fract a)

long fract __fractuqqgsq (unsigned short fract a)

long long fract __fractuqqdq (unsigned short fract a)

short accum __fractuqgha (unsigned short fract a)

accum __fractuqqgsa (unsigned short fract a)

long accum __fractuqqda (unsigned short fract a)

long long accum __fractuqqta (unsigned short fract a)

unsigned fract __fractuqquhq2 (unsigned short fract a)

unsigned long fract __fractuqqusq2 (unsigned short fract
a)

unsigned long long fract __fractuqqudq2 (unsigned
short fract a)

unsigned short accum
a)

unsigned accum

_fractuqquha (unsigned short fract

_fractuqqusa (unsigned short fract a)

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]



Chapter 4: The GCC low-level runtime library

unsigned long accum __fractuqquda (unsigned short fract
a)

unsigned long long accum
fract a)

signed char __fractuqqqi (unsigned short fract a)

short __fractuqqghi (unsigned short fract a)

int __fractuqqgsi (unsigned short fract a)

long __fractuqqdi (unsigned short fract a)

long long __fractuqqti (unsigned short fract a)

float __fractuqqsf (unsigned short fract a)

double __fractuqqdf (unsigned short fract a)

short fract __fractuhqqq (unsigned fract a)

_fractuqquta (unsigned short

fract __fractuhghq (unsigned fract a)

long fract __fractuhqgsq (unsigned fract a)

long long fract __fractuhqdq (unsigned fract a)

short accum __fractuhgha (unsigned fract a)

accum __fractuhqgsa (unsigned fract a)

long accum __fractuhqda (unsigned fract a)

long long accum __fractuhqta (unsigned fract a)

unsigned short fract __fractuhquqq?2 (unsigned fract a)

unsigned long fract __fractuhqusq2 (unsigned fract a)

unsigned long long fract __fractuhqudq2 (unsigned
fract a)

unsigned short accum __fractuhquha (unsigned fract a)

unsigned accum __fractuhqusa (unsigned fract a)

unsigned long accum __fractuhquda (unsigned fract a)

unsigned long long accum __fractuhquta (unsigned fract
)

signed char __fractuhqqi (unsigned fract a)

short __fractuhqhi (unsigned fract a)

int __fractuhqgsi (unsigned fract a)

long __fractuhqdi (unsigned fract a)

long long __fractuhqti (unsigned fract a)

float __fractuhqsf (unsigned fract a)

double __fractuhqdf (unsigned fract a)

short fract __fractusqqq (unsigned long fract a)

fract __fractusqhq (unsigned long fract a)

long fract __fractusqsq (unsigned long fract a)

long long fract __fractusqdq (unsigned long fract a)

short accum __fractusgha (unsigned long fract a)

accum __fractusqgsa (unsigned long fract a)

long accum __fractusqda (unsigned long fract a)

long long accum __fractusqta (unsigned long fract a)

unsigned short fract __fractusquqq2 (unsigned long fract
a)

unsigned fract

_fractusquhq2 (unsigned long fract a)

35

[Runtime Function]
[Runtime Function]

Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function

[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]



36 GNU Compiler Collection (GCC) Internals

unsigned long long fract __fractusqudq2 (unsigned long
fract a)

unsigned short accum
)

unsigned accum __fractusqusa (unsigned long fract a)

unsigned long accum __fractusquda (unsigned long fract a)

unsigned long long accum __fractusquta (unsigned long
fract a)

signed char __fractusqqi (unsigned long fract a)

short __fractusqhi (unsigned long fract a)

int __fractusqsi (unsigned long fract a)

long __fractusqdi (unsigned long fract a)

long long __fractusqti (unsigned long fract a)

float __fractusqsf (unsigned long fract a)

double __fractusqdf (unsigned long fract a)

short fract __fractudqqq (unsigned long long fract a)

fract __fractudghq (unsigned long long fract a)

long fract __fractudqgsq (unsigned long long fract a)

long long fract __fractudqdq (unsigned long long fract a)

short accum __fractudgha (unsigned long long fract a)

accum __fractudqgsa (unsigned long long fract a)

long accum __fractudqda (unsigned long long fract a)

long long accum __fractudqta (unsigned long long fract a)

unsigned short fract __fractudquqq2 (unsigned long long
fract a)

unsigned fract __fractudquhq2 (unsigned long long fract a)

unsigned long fract __fractudqusq2 (unsigned long long
fract a)

unsigned short accum
fract a)

unsigned accum __fractudqusa (unsigned long long fract a)

unsigned long accum __fractudquda (unsigned long long
fract a)

unsigned long long accum __fractudquta (unsigned long
long fract a)

signed char __fractudqqi (unsigned long long fract a)

short __fractudqhi (unsigned long long fract a)

int __fractudqsi (unsigned long long fract a)

long __fractudqdi (unsigned long long fract a)

long long __fractudqti (unsigned long long fract a)

float __fractudqgsf (unsigned long long fract a)

double __fractudqdf (unsigned long long fract a)

short fract __fractuhaqq (unsigned short accum a)

fract __fractuhahq (unsigned short accum a)

long fract __fractuhasq (unsigned short accum a)

long long fract __fractuhadq (unsigned short accum a)

short accum __fractuhaha (unsigned short accum a)

_fractusquha (unsigned long fract

_fractudquha (unsigned long long

[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]



Chapter 4: The GCC low-level runtime library

accum __fractuhasa (unsigned short accum a)

long accum __fractuhada (unsigned short accum a)

long long accum __fractuhata (unsigned short accum a)

unsigned short fract __fractuhauqq (unsigned short
accum a)

unsigned fract __fractuhauhq (unsigned short accum a)

unsigned long fract __fractuhausq (unsigned short accum
)

unsigned long long fract __fractuhaudq (unsigned short
accum a)

unsigned accum

unsigned long accum
accum a)

unsigned long long accum
short accum a)

signed char __fractuhaqi (unsigned short accum a)

short __fractuhahi (unsigned short accum a)

int __fractuhasi (unsigned short accum a)

long __fractuhadi (unsigned short accum a)

long long __fractuhati (unsigned short accum a)

float __fractuhasf (unsigned short accum a)

double __fractuhadf (unsigned short accum a)

short fract __fractusaqq (unsigned accum a)

fract __fractusahq (unsigned accum a)

long fract __fractusasq (unsigned accum a)

long long fract __fractusadq (unsigned accum a)

short accum __fractusaha (unsigned accum a)

accum __fractusasa (unsigned accum a)

long accum __fractusada (unsigned accum a)

long long accum __fractusata (unsigned accum a)

unsigned short fract __fractusauqq (unsigned accum a)

unsigned fract __fractusauhq (unsigned accum a)

unsigned long fract __fractusausq (unsigned accum a)

unsigned long long fract __fractusaudq (unsigned
accum a)

unsigned short accum __fractusauha2 (unsigned accum a)

unsigned long accum __fractusauda2 (unsigned accum a)

unsigned long long accum __fractusauta2 (unsigned
accum a)

signed char __fractusaqi (unsigned accum a)

short __fractusahi (unsigned accum a)

int __fractusasi (unsigned accum a)

long __fractusadi (unsigned accum a)

long long __fractusati (unsigned accum a)

float __fractusasf (unsigned accum a)

double __fractusadf (unsigned accum a)

short fract __fractudaqq (unsigned long accum a)

__fractuhausa2 (unsigned short accum a)
_fractuhauda2 (unsigned short

_fractuhauta2 (unsigned

37

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]



38 GNU Compiler Collection (GCC) Internals

fract __fractudahq (unsigned long accum a)

long fract __fractudasq (unsigned long accum a)

long long fract __fractudadq (unsigned long accum a)

short accum __fractudaha (unsigned long accum a)

accum __fractudasa (unsigned long accum a)

long accum __fractudada (unsigned long accum a)

long long accum __fractudata (unsigned long accum a)

unsigned short fract __fractudauqq (unsigned long
accum a)

unsigned fract __fractudauhq (unsigned long accum a)

unsigned long fract __fractudausq (unsigned long accum

a)

unsigned long long fract __fractudaudq (unsigned long
accum a)

unsigned short accum __fractudauha?2 (unsigned long
accum a)

unsigned accum __fractudausa2 (unsigned long accum a)

unsigned long long accum __fractudauta2 (unsigned long
accum a)

signed char __fractudaqi (unsigned long accum a)

short __fractudahi (unsigned long accum a)

int __fractudasi (unsigned long accum a)

long __fractudadi (unsigned long accum a)

long long __fractudati (unsigned long accum a)

float __fractudasf (unsigned long accum a)

double __fractudadf (unsigned long accum a)

short fract __fractutaqq (unsigned long long accum a)

fract __fractutahq (unsigned long long accum a)

long fract __fractutasq (unsigned long long accum a)

long long fract __fractutadq (unsigned long long accum a)

short accum __fractutaha (unsigned long long accum a)

accum __fractutasa (unsigned long long accum a)

long accum __fractutada (unsigned long long accum a)

long long accum __fractutata (unsigned long long accum a)

unsigned short fract __fractutauqq (unsigned long long
accum a)

unsigned fract __fractutauhq (unsigned long long accum a)

unsigned long fract __fractutausq (unsigned long long
accum a)

unsigned long long fract
long accum a)

unsigned short accum
accum a)

unsigned accum
a)

unsigned long accum
accum a)

_fractutaudq (unsigned long

__fractutauha? (unsigned long long

_fractutausa2 (unsigned long long accum

_fractutauda2 (unsigned long long

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]



Chapter 4: The GCC low-level runtime library

signed char __fractutaqi (unsigned long long accum a)
short __fractutahi (unsigned long long accum a)
int __fractutasi (unsigned long long accum a)
long __fractutadi (unsigned long long accum a)
long long __fractutati (unsigned long long accum a)
float __fractutasf (unsigned long long accum a)
double __fractutadf (unsigned long long accum a)
short fract __fractqiqq (signed char a)

fract __fractqihq (signed char a)

long fract __fractqisq (signed char a)

long long fract __fractqidq (signed char a)
short accum __fractqiha (signed char a)

accum __fractqisa (signed char a)

long accum __fractqida (signed char a)

long long accum __fractqita (signed char a)
unsigned short fract __fractqiuqq (signed char a)
unsigned fract __fractqiuhq (signed char a)
unsigned long fract __fractqiusq (signed char a)
unsigned long long fract __fractqiudq (signed char a)
unsigned short accum __fractqiuha (signed char a)
unsigned accum __fractqiusa (signed char a)
unsigned long accum __fractqiuda (signed char a)
unsigned long long accum __fractqiuta (signed char a)
short fract __fracthiqq (short a)

fract __fracthihq (short a)

long fract __fracthisq (short a)

long long fract __fracthidq (short a)

short accum __fracthiha (short a)

accum __fracthisa (short a)

long accum __fracthida (short a)

long long accum __fracthita (short a)

unsigned short fract __fracthiuqq (short a)
unsigned fract __fracthiuhq (short a)

unsigned long fract __fracthiusq (short a)
unsigned long long fract __fracthiudq (short a)
unsigned short accum __fracthiuha (short a)
unsigned accum __fracthiusa (short a)

unsigned long accum __fracthiuda (short a)
unsigned long long accum __fracthiuta (short a)
short fract __fractsiqq (int a)

fract __fractsihq (int a)

long fract __fractsisq (int a)

long long fract __fractsidq (int a)

short accum __fractsiha (int a)

accum __fractsisa (int a)

long accum __fractsida (int a)

long long accum __fractsita (int a)

39

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]



40

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

GNU Compiler Collection (GCC) Internals

short fract __fractsiuqq (int a)
fract __fractsiuhq (int a)

long fract __fractsiusq (int a)

long long fract __fractsiudq (int a)
short accum __fractsiuha (int a)
accum __fractsiusa (int a)

long accum __fractsiuda (int a)

long long accum __fractsiuta (int a)

short fract __fractdiqq (long a)
fract __fractdihq (long a)

long fract
long long fract
short accum

__fractdisq (long a)
__fractdidq (long a)
fractdiha (long a)

accum __fractdisa (long a)

long accum
long long accum

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

__fractdida (long a)
__fractdita (long a)

short fract __fractdiuqq (long a)
fract __fractdiuhq (long a)

long fract __fractdiusq (long a)

long long fract __fractdiudq (long a)
short accum __fractdiuha (long a)
accum __fractdiusa (long a)

long accum __fractdiuda (long a)

long long accum __fractdiuta (long a)

short fract __fracttiqq (long long a)

fract

_fracttihq (long long a)

long fract __fracttisq (long long a)

long long fract
short accum
__fracttisa (long long a)
long accum
long long accum

accum

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

__fracttidq (long long a)
__fracttiha (long long a)
_fracttida (long long a)
__fracttita (long long a)

short fract __fracttiuqq (long long a)
fract __fracttiuhq (long long a)

long fract __fracttiusq (long long a)

long long fract __fracttiudq (long long a)
short accum __fracttiuha (long long a)
accum __fracttiusa (long long a)

long accum __fracttiuda (long long a)

long long accum __fracttiuta (long long a)

short fract __fractsfqq (float a)
fract __fractsfhq (float a)

long fract
long long fract
short accum
_fractsfsa (float a)

accum

long accum

_fractsfsq (float a)
__fractsfdq (float a)
__fractsfha (float a)

_fractsfda (float a)

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]



Chapter 4: The GCC low-level runtime library

long long accum __fractsfta (float a)

unsigned short fract __fractsfuqq (float a)
unsigned fract __fractsfuhq (float a)

unsigned long fract __fractsfusq (foat a)
unsigned long long fract __fractsfudq (float a)
unsigned short accum __fractsfuha (float a)
unsigned accum __fractsfusa (float a)

unsigned long accum __fractsfuda (float a)
unsigned long long accum __fractsfuta (float a)
short fract __fractdfqq (double a)

fract __fractdfhq (double a)

long fract __fractdfsq (double a)

long long fract __fractdfdq (double a)

short accum __fractdfha (double a)

accum __fractdfsa (double a)

long accum __fractdfda (double a)

long long accum __fractdfta (double a)

unsigned short fract __fractdfuqq (double a)
unsigned fract __fractdfuhq (double a)

unsigned long fract __fractdfusq (double a)
unsigned long long fract __fractdfudq (double a)
unsigned short accum __fractdfuha (double a)
unsigned accum __fractdfusa (double a)

unsigned long accum __fractdfuda (double a)
unsigned long long accum __fractdfuta (double a)

41

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

These functions convert from fractional and signed non-fractionals to fractionals and

signed non-fractionals, without saturation.

fract __satfractqqhq2 (short fract a)

long fract __satfractqqsq2 (short fract a)

long long fract __satfractqqdq2 (short fract a)

short accum __satfractqgha (short fract a)

accum __satfractqqgsa (short fract a)

long accum __satfractqqda (short fract a)

long long accum __satfractqqta (short fract a)

unsigned short fract __satfractqquqq (short fract a)

unsigned fract __satfractqquhq (short fract a)

unsigned long fract __satfractqqusq (short fract a)

unsigned long long fract __satfractqqudq (short fract
)

unsigned short accum

unsigned accum _

unsigned long accum __

unsigned long long accum
)

short fract __satfracthqqq2 (fract a)

long fract __satfracthqsq2 (fract a)

__satfractqquha (short fract a)
_satfractqqusa (short fract a)
satfractqquda (short fract a)
satfractqquta (short fract

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]



42 GNU Compiler Collection (GCC) Internals

long long fract __satfracthqdq2 (fract a)

short accum __satfracthgha (fract a)

accum __satfracthqgsa (fract a)

long accum __satfracthqda (fract a)

long long accum __satfracthqta (fract a)

unsigned short fract __satfracthquqq (

unsigned fract __satfracthquhq (fract a)

unsigned long fract __satfracthqusq (fract a)

unsigned long long fract __satfracthqudq (fract a)

unsigned short accum __satfracthquha (fract a)

unsigned accum __satfracthqusa (fract a)

unsigned long accum __satfracthquda (fract a)

unsigned long long accum __satfracthquta (fract a)

short fract __satfractsqqq2 (long fract a)

fract __satfractsqhq2 (long fract a)

long long fract __satfractsqdq2 (long fract a)

short accum __satfractsqha (long fract a)

accum __satfractsqsa (long fract a)

long accum __satfractsqda (long fract a)

long long accum __satfractsqta (long fract a)

unsigned short fract __satfractsquqq (long fract a)

unsigned fract __satfractsquhq (long fract a)

unsigned long fract __satfractsqusq (long fract a)

unsigned long long fract __satfractsqudq (long fract a)

unsigned short accum __satfractsquha (long fract a)

unsigned accum __satfractsqusa (long fract a)

unsigned long accum __satfractsquda (long fract a)

unsigned long long accum __satfractsquta (long fract a)

short fract __satfractdqqq2 (long long fract a)

fract __satfractdqhq2 (long long fract a)

long fract __satfractdqsq2 (long long fract a)

short accum __satfractdgha (long long fract a)

accum __satfractdqgsa (long long fract a)

long accum __satfractdqda (long long fract a)

long long accum __satfractdqta (long long fract a)

unsigned short fract __satfractdquqq (long long fract a)

unsigned fract __satfractdquhq (long long fract a)

unsigned long fract __satfractdqusq (long long fract a)

unsigned long long fract __satfractdqudq (long long
fract a)

unsigned short accum __satfractdquha (long long fract a)

unsigned accum __satfractdqusa (long long fract a)

unsigned long accum __satfractdquda (long long fract a)

unsigned long long accum __satfractdquta (long long

fract a)

fract a)
short fract __satfracthaqq (short accum a)
fract __satfracthahq (short accum a)

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

Runtime Function
Runtime Function
Runtime Function
Runtime Function

[ ]
[ ]
[ ]
[ ]

[Runtime Function]
[Runtime Function]



Chapter 4: The GCC low-level runtime library

long fract __satfracthasq (short accum a)
long long fract __satfracthadq (short accum a)
accum __satfracthasa2 (short accum a)
long accum __satfracthada?2 (short accum a)
long long accum __satfracthata2 (short accum a)
unsigned short fract __satfracthauqq (short accum a)
unsigned fract __satfracthauhq (short accum a)
unsigned long fract __satfracthausq (short accum a)
unsigned long long fract __satfracthaudq (short accum
a)
unsigned short accum __satfracthauha (short accum a)
unsigned accum __satfracthausa (short accum a)
unsigned long accum __satfracthauda (short accum a)
unsigned long long accum __satfracthauta (short accum

a)
short fract __satfractsaqq (accum a)
fract __satfractsahq (accum a)
long fract __satfractsasq (accum a)

long long fract __satfractsadq (accum a)

short accum __satfractsaha2 (accum a)

long accum __satfractsada2 (accum a)

long long accum __satfractsata2 (accum a)

unsigned short fract __satfractsauqq (accum a)

unsigned fract __satfractsauhq (accum a)

unsigned long fract __satfractsausq (accum a)

unsigned long long fract __satfractsaudq (accum a)

unsigned short accum __satfractsauha (accum a)

unsigned accum __satfractsausa (accum a)

unsigned long accum __satfractsauda (accum a)

unsigned long long accum __satfractsauta (accum a)

short fract __satfractdaqq (long accum a)

fract __satfractdahq (long accum a)

long fract __satfractdasq (long accum a)

long long fract __satfractdadq (long accum a)

short accum __satfractdaha2 (long accum a)

accum __satfractdasa2 (long accum a)

long long accum __satfractdata2 (long accum a)

unsigned short fract __satfractdauqq (long accum a)

unsigned fract __satfractdauhq (long accum a)

unsigned long fract __satfractdausq (long accum a)

unsigned long long fract __satfractdaudq (long accum
)

unsigned short accum __satfractdauha (long accum a)

unsigned accum __satfractdausa (long accum a)

unsigned long accum __satfractdauda (long accum a)

unsigned long long accum __satfractdauta (long accum

a)

43

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

Runtime Function]
Runtime Function]
Runtime Function]
Runtime Function]
Runtime Function]
Runtime Function]
Runtime Function]
Runtime Function]
Runtime Function]
Runtime Function]
Runtime Function]
Runtime Function]
Runtime Function]
Runtime Function]
Runtime Function]
Runtime Function]
Runtime Function]
Runtime Function]
Runtime Function]
Runtime Function]
Runtime Function]
Runtime Function]
Runtime Function]
Runtime Function]
Runtime Function]
Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]



44 GNU Compiler Collection (GCC) Internals

short fract __satfracttaqq (long long accum a)

fract __satfracttahq (long long accum a)

long fract __satfracttasq (long long accum a)

long long fract __satfracttadq (long long accum a)

short accum __satfracttaha2 (long long accum a)

accum __satfracttasa2 (long long accum a)

long accum __satfracttada2 (long long accum a)

unsigned short fract __satfracttauqq (long long accum
)

unsigned fract __satfracttauhq (long long accum a)

unsigned long fract __satfracttausq (long long accum a)

unsigned long long fract __satfracttaudq (long long
accum a)

unsigned short accum
a)

unsigned accum __satfracttausa (long long accum a)

unsigned long accum __satfracttauda (long long accum a)

unsigned long long accum __satfracttauta (long long
accum a)

short fract __satfractuqqqq (unsigned short fract a)

fract __satfractuqqhq (unsigned short fract a)

long fract __satfractuqqsq (unsigned short fract a)

long long fract __satfractuqqdq (unsigned short fract a)

short accum __satfractuqqgha (unsigned short fract a)

accum __satfractuqqgsa (unsigned short fract a)

long accum __satfractuqqda (unsigned short fract a)

long long accum __satfractuqqta (unsigned short fract a)

unsigned fract __satfractuqquhq?2 (unsigned short fract a)

unsigned long fract __satfractuqqusq2 (unsigned short
fract a)

unsigned long long fract
short fract a)

unsigned short accum
fract a)

unsigned accum __satfractuqqusa (unsigned short fract a)

unsigned long accum __satfractuqquda (unsigned short
fract a)

unsigned long long accum
short fract a)

short fract __satfractuhqqq (unsigned fract a)

fract __satfractuhqhq (unsigned fract a)

long fract __satfractuhqsq (unsigned fract a)

long long fract __satfractuhqdq (unsigned fract a)

short accum __satfractuhqgha (unsigned fract a)

accum __satfractuhqgsa (unsigned fract a)

long accum __satfractuhqda (unsigned fract a)

long long accum __satfractuhqta (unsigned fract a)

_satfracttauha (long long accum

_satfractuqqudq?2 (unsigned

_satfractuqquha (unsigned short

__satfractuqquta (unsigned

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]

Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function

[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]

[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]



Chapter 4: The GCC low-level runtime library

unsigned short fract
a)

unsigned long fract
)

unsigned long long fract
fract a)

unsigned short accum
)

unsigned accum __satfractuhqusa (unsigned fract a)

unsigned long accum __satfractuhquda (unsigned fract a)

unsigned long long accum __satfractuhquta (unsigned
fract a)

short fract __satfractusqqq (unsigned long fract a)

fract __satfractusqhq (unsigned long fract a)

long fract __satfractusqsq (unsigned long fract a)

long long fract __satfractusqdq (unsigned long fract a)

short accum __satfractusqgha (unsigned long fract a)

accum __satfractusqsa (unsigned long fract a)

long accum __satfractusqda (unsigned long fract a)

long long accum __satfractusqta (unsigned long fract a)

unsigned short fract __satfractusquqq2 (unsigned long
fract a)

unsigned fract __satfractusquhq2 (unsigned long fract a)

unsigned long long fract __satfractusqudq2 (unsigned
long fract a)

unsigned short accum
fract a)

unsigned accum __satfractusqusa (unsigned long fract a)

unsigned long accum __satfractusquda (unsigned long
fract a)

unsigned long long accum
long fract a)

short fract __satfractudqqq (unsigned long long fract a)

fract __satfractudqhq (unsigned long long fract a)

long fract __satfractudqsq (unsigned long long fract a)

long long fract __satfractudqdq (unsigned long long fract
2)

short accum __satfractudgha (unsigned long long fract a)

accum __satfractudqgsa (unsigned long long fract a)

long accum __satfractudqda (unsigned long long fract a)

long long accum __satfractudqta (unsigned long long fract
2)

unsigned short fract
long fract a)

unsigned fract __satfractudquhq2 (unsigned long long
fract a)

_satfractuhquqq?2 (unsigned fract

__satfractuhqusq2 (unsigned fract

_satfractuhqudq?2 (unsigned

_satfractuhquha (unsigned fract

_satfractusquha (unsigned long

_satfractusquta (unsigned

_satfractudquqq2 (unsigned long

45

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]

[Runtime Function]



46 GNU Compiler Collection (GCC) Internals

unsigned long fract __satfractudqusq2 (unsigned long
long fract a)

unsigned short accum
long fract a)

unsigned accum __satfractudqusa (unsigned long long fract
a)

unsigned long accum
long fract a)

unsigned long long accum
long long fract a)

short fract __satfractuhaqq (unsigned short accum a)

fract __satfractuhahq (unsigned short accum a)

long fract __satfractuhasq (unsigned short accum a)

long long fract __satfractuhadq (unsigned short accum a)

short accum __satfractuhaha (unsigned short accum a)

accum __satfractuhasa (unsigned short accum a)

long accum __satfractuhada (unsigned short accum a)

long long accum __satfractuhata (unsigned short accum a)

unsigned short fract __satfractuhauqq (unsigned short
accum a)

unsigned fract __satfractuhauhq (unsigned short accum a)

unsigned long fract __satfractuhausq (unsigned short
accum a)

unsigned long long fract
short accum a)

unsigned accum __satfractuhausa2 (unsigned short accum
a)

unsigned long accum
accum a)

unsigned long long accum
short accum a)

short fract __satfractusaqq (unsigned accum a)

fract __satfractusahq (unsigned accum a)

long fract __satfractusasq (unsigned accum a)

long long fract __satfractusadq (unsigned accum a)

short accum __satfractusaha (unsigned accum a)

accum __satfractusasa (unsigned accum a)

long accum __satfractusada (unsigned accum a)

long long accum __satfractusata (unsigned accum a)

unsigned short fract __satfractusauqq (unsigned accum
a)

unsigned fract __satfractusauhq (unsigned accum a)

unsigned long fract __satfractusausq (unsigned accum
a)

unsigned long long fract
accum a)

__satfractudquha (unsigned long

_satfractudquda (unsigned long

_satfractudquta (unsigned

__satfractuhaudq (unsigned

_satfractuhauda?2 (unsigned short

__satfractuhauta2 (unsigned

__satfractusaudq (unsigned

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]



Chapter 4: The GCC low-level runtime library

unsigned short accum __satfractusauha2 (unsigned

accum a)

unsigned long accum __satfractusauda2 (unsigned accum
a)

unsigned long long accum __satfractusauta2 (unsigned
accum a)

short fract __satfractudaqq (unsigned long accum a)

fract __satfractudahq (unsigned long accum a)

long fract __satfractudasq (unsigned long accum a)

long long fract __satfractudadq (unsigned long accum a)

short accum __satfractudaha (unsigned long accum a)

accum __satfractudasa (unsigned long accum a)

long accum __satfractudada (unsigned long accum a)

long long accum __satfractudata (unsigned long accum a)

unsigned short fract __satfractudauqq (unsigned long
accum a)

unsigned fract __satfractudauhq (unsigned long accum a)

unsigned long fract __satfractudausq (unsigned long
accum a)

unsigned long long fract
long accum a)

unsigned short accum
accum a)

unsigned accum
a)

unsigned long long accum
long accum a)

short fract __satfractutaqq (unsigned long long accum a)

fract __satfractutahq (unsigned long long accum a)

long fract __satfractutasq (unsigned long long accum a)

long long fract __satfractutadq (unsigned long long
accum a)

short accum __satfractutaha (unsigned long long accum a)

accum __satfractutasa (unsigned long long accum a)

long accum __satfractutada (unsigned long long accum a)

long long accum __satfractutata (unsigned long long
accum a)

unsigned short fract
long accum a)

unsigned fract __satfractutauhq (unsigned long long
accum a)

unsigned long fract
long accum a)

unsigned long long fract
long long accum a)

unsigned short accum __satfractutauha2 (unsigned long
long accum a)

_satfractudaudq (unsigned

_satfractudauha2 (unsigned long

_satfractudausa2 (unsigned long accum

_satfractudauta2 (unsigned

__satfractutauqq (unsigned long
__satfractutausq (unsigned long

_satfractutaudq (unsigned

47

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[ ]

Runtime Function

[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]

[Runtime Function]



48 GNU Compiler Collection (GCC) Internals

unsigned accum
accum a)

unsigned long accum
long accum a)

short fract __satfractqiqq (signed char a)

fract __satfractqihq (signed char a)

long fract __satfractqisq (signed char a)

long long fract __satfractqidq (signed char a)

short accum __satfractqiha (signed char a)

accum __satfractqisa (signed char a)

long accum __satfractqida (signed char a)

long long accum __satfractqita (signed char a)

unsigned short fract __satfractqiuqq (signed char a)

unsigned fract __satfractqiuhq (signed char a)

unsigned long fract __satfractqiusq (signed char a)

unsigned long long fract __satfractqiudq (signed char
)

unsigned short accum __satfractqiuha (signed char a)

unsigned accum __satfractqiusa (signed char a)

unsigned long accum __satfractqiuda (signed char a)

unsigned long long accum __satfractqiuta (signed char

_satfractutausa2 (unsigned long long

_satfractutauda2 (unsigned long

a)
short fract __satfracthiqq (short a)
fract __satfracthihq (short a)
long fract __satfracthisq (short a)

long long fract __satfracthidq (short a)

short accum __satfracthiha (short a)

accum __satfracthisa (short a)

long accum __satfracthida (short a)

long long accum __satfracthita (short a)
unsigned short fract __satfracthiuqq (short a)
unsigned fract __satfracthiuhq (short a)
unsigned long fract __satfracthiusq (short a)
unsigned long long fract __satfracthiudq (short a)
unsigned short accum __satfracthiuha (short a)
unsigned accum __satfracthiusa (short a)
unsigned long accum __satfracthiuda (short a)
unsigned long long accum __satfracthiuta (short a)
short fract __satfractsiqq (int a)

fract __satfractsihq (int a)

long fract __satfractsisq (int a)

long long fract __satfractsidq (int a)

short accum __satfractsiha (int a)

accum __satfractsisa (int a)

long accum __satfractsida (int a)

long long accum __satfractsita (int a)
unsigned short fract __satfractsiuqq (int a)

[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]



Chapter 4: The GCC low-level runtime library

unsigned fract __satfractsiuhq (int a)

unsigned long fract __satfractsiusq (int a)
unsigned long long fract __satfractsiudq (int a)
unsigned short accum __satfractsiuha (int a)
unsigned accum __satfractsiusa (int a)

unsigned long accum __satfractsiuda (int a)
unsigned long long accum __satfractsiuta (int a)
short fract __satfractdiqq (long a)

fract __satfractdihq (long a)

long fract __satfractdisq (long a)

long long fract __satfractdidq (long a)

short accum __satfractdiha (long a)

accum __satfractdisa (long a)

long accum __satfractdida (long a)

long long accum __satfractdita (long a)

unsigned short fract __satfractdiuqq (long a)
unsigned fract __satfractdiuhq (long a)

unsigned long fract __satfractdiusq (long a)
unsigned long long fract __satfractdiudq (long a)
unsigned short accum __satfractdiuha (long a)
unsigned accum __satfractdiusa (long a)

unsigned long accum __satfractdiuda (long a)
unsigned long long accum __satfractdiuta (long a)
short fract __satfracttiqq (long long a)

fract __satfracttihq (long long a)

long fract __satfracttisq (long long a)

long long fract __satfracttidq (long long a)
short accum __satfracttiha (long long a)
accum __satfracttisa (long long a)

long accum __satfracttida (long long a)

long long accum __satfracttita (long long a)

unsigned short fract __satfracttiuqq (long long a)
unsigned fract __satfracttiuhq (long long a)

unsigned long fract __satfracttiusq (long long a)
unsigned long long fract __satfracttiudq (long long a)
unsigned short accum __satfracttiuha (long long a)
unsigned accum __satfracttiusa (long long a)

unsigned long accum __satfracttiuda (long long a)
unsigned long long accum __satfracttiuta (long long a)
short fract __satfractsfqq (float a)

fract __satfractsfhq (float a)

long fract __satfractsfsq (float a)

long long fract __satfractsfdq (float a)

short accum __satfractsfha (float a)

accum __satfractsfsa (float a)

long accum __satfractsfda (float a)

long long accum __satfractsfta (float a)

49

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]



50

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

short fract
_satfractdfhq (double a)

fract

long fract __
long long fract
short accum
satfractdfsa (double a)

accum

long accum __
long long accum

GNU Compiler Collection (GCC) Internals

short fract __satfractsfuqq (float a)

fract __satfractsfuhq (float a)

long fract __satfractsfusq (foat a)

long long fract __satfractsfudq (float a)

short accum __satfractsfuha (float a)

accum __satfractsfusa (float a)

long accum __satfractsfuda (foat a)

long long accum __satfractsfuta (float a)
__satfractdfqq (double a)

satfractdfsq (double a)

__satfractdfdq (double a)

__satfractdfha (double a)

satfractdfda (double a)
satfractdfta (double a)

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function

Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function

unsigned short fract __satfractdfuqq (double a)

unsigned fract __satfractdfuhq (double a)

unsigned long fract __satfractdfusq (double a)

unsigned long long fract __satfractdfudq (double a)

unsigned short accum __satfractdfuha (double a)

unsigned accum __satfractdfusa (double a)

unsigned long accum __satfractdfuda (double a)

unsigned long long accum __satfractdfuta (double a)
The functions convert from fractional and signed non-fractionals to fractionals, with
saturation.

unsigned char __fractunsqqqi (short fract a)

unsigned short __fractunsqghi (short fract a)

unsigned int __fractunsqqgsi (short fract a)

unsigned long __fractunsqqdi (short fract a)

unsigned long long __fractunsqqti (short fract a)

unsigned char __fractunshqqi (fract a)

unsigned short __fractunshqghi (fract a)

unsigned int __fractunshqsi (fract a)

unsigned long __fractunshqdi (fract a)

unsigned long long __fractunshqti (fract a)

unsigned char __fractunssqqi (long fract a)

unsigned short __fractunssqghi (long fract a)

unsigned int __fractunssqsi (long fract a)

unsigned long __fractunssqdi (long fract a)

unsigned long long __fractunssqti (long fract a)

unsigned char __fractunsdqqi (long long fract a)

unsigned short __fractunsdghi (long long fract a)

unsigned int __fractunsdqsi (long long fract a)

unsigned
unsigned

long __fractunsdqdi (long long fract a)
long long __fractunsdqti (long long fract a)

Runtime Function
Runtime Function
Runtime Function

[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[Runtime Function]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]



Chapter 4:

The GCC low-level runtime library

unsigned char __fractunshaqi (short accum a)

unsigned short __fractunshahi (short accum a)

unsigned int __fractunshasi (short accum a)

unsigned long __fractunshadi (short accum a)

unsigned long long __fractunshati (short accum a)

unsigned char __fractunssaqi (accum a)

unsigned short __fractunssahi (accum a)

unsigned int __fractunssasi (accum a)

unsigned long __fractunssadi (accum a)

unsigned long long __fractunssati (accum a)

unsigned char __fractunsdaqi (long accum a)

unsigned short __fractunsdahi (long accum a)

unsigned int __fractunsdasi (long accum a)

unsigned long __fractunsdadi (long accum a)

unsigned long long __fractunsdati (long accum a)

unsigned char __fractunstaqi (long long accum a)

unsigned short __fractunstahi (long long accum a)

unsigned int __fractunstasi (long long accum a)

unsigned long __fractunstadi (long long accum a)

unsigned long long __fractunstati (long long accum a)

unsigned char __fractunsuqqqi (unsigned short fract a)

unsigned short __fractunsuqqghi (unsigned short fract a)

unsigned int __fractunsuqqgsi (unsigned short fract a)

unsigned long __fractunsuqqdi (unsigned short fract a)

unsigned long long __fractunsuqqti (unsigned short fract
a)

unsigned char __fractunsuhqqi (unsigned fract a)

unsigned short __fractunsuhqghi (unsigned fract a)

unsigned int __fractunsuhqgsi (unsigned fract a)

unsigned long __fractunsuhqdi (unsigned fract a)

unsigned long long __fractunsuhqti (unsigned fract a)

unsigned char __fractunsusqqi (unsigned long fract a)

unsigned short __fractunsusqghi (unsigned long fract a)

unsigned int __fractunsusqsi (unsigned long fract a)

unsigned long __fractunsusqdi (unsigned long fract a)

unsigned long long __fractunsusqti (unsigned long fract
)

unsigned char __fractunsudqqi (unsigned long long fract a)

unsigned short __fractunsudghi (unsigned long long fract
a)

unsigned int __fractunsudqsi (unsigned long long fract a)

unsigned long __fractunsudqdi (unsigned long long fract a)

unsigned long long __fractunsudqti (unsigned long long
fract a)

unsigned char __fractunsuhaqi (unsigned short accum a)

unsigned short __fractunsuhahi (unsigned short accum a)

unsigned

int __fractunsuhasi (unsigned short accum a)

o1

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]



52 GNU Compiler Collection (GCC) Internals

unsigned long __fractunsuhadi (unsigned short accum a)
unsigned long long __fractunsuhati (unsigned short
accum a)
unsigned char __fractunsusaqi (unsigned accum a)
unsigned short __fractunsusahi (unsigned accum a)
unsigned int __fractunsusasi (unsigned accum a)
unsigned long __fractunsusadi (unsigned accum a)
unsigned long long __fractunsusati (unsigned accum a)
unsigned char __fractunsudaqi (unsigned long accum a)
unsigned short __fractunsudahi (unsigned long accum a)
unsigned int __fractunsudasi (unsigned long accum a)
unsigned long __fractunsudadi (unsigned long accum a)
unsigned long long __fractunsudati (unsigned long

accum a)

unsigned char __fractunsutaqi (unsigned long long accum
a)

unsigned short __fractunsutahi (unsigned long long accum
a)

unsigned int __fractunsutasi (unsigned long long accum a)

unsigned long __fractunsutadi (unsigned long long accum
a)

unsigned long long __fractunsutati (unsigned long long
accum a)

short fract __fractunsqiqq (unsigned char a)

fract __fractunsqihq (unsigned char a)

long fract __fractunsqisq (unsigned char a)

long long fract __fractunsqidq (unsigned char a)

short accum __fractunsqiha (unsigned char a)

accum __fractunsqisa (unsigned char a)

long accum __fractunsqida (unsigned char a)

long long accum __fractunsqita (unsigned char a)

unsigned short fract __fractunsqiuqq (unsigned char a)

unsigned fract __fractunsqiuhq (unsigned char a)

unsigned long fract __fractunsqiusq (unsigned char a)

unsigned long long fract __fractunsqiudq (unsigned
char a)

unsigned short accum __fractunsqiuha (unsigned char a)

unsigned accum __fractunsqiusa (unsigned char a)

unsigned long accum __fractunsqiuda (unsigned char a)

unsigned long long accum __fractunsqiuta (unsigned
char a)

short fract __fractunshiqq (unsigned short a)

fract __fractunshihq (unsigned short a)

long fract __fractunshisq (unsigned short a)

long long fract __fractunshidq (unsigned short a)

short accum __fractunshiha (unsigned short a)

accum __fractunshisa (unsigned short a)

[Runtime Function]
[Runtime Function]

Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function

[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]

[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]

Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function

[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]



Chapter 4: The GCC low-level runtime library

long accum __fractunshida (unsigned short a)

long long accum __fractunshita (unsigned short a)

unsigned short fract __fractunshiuqq (unsigned short a)

unsigned fract __fractunshiuhq (unsigned short a)

unsigned long fract __fractunshiusq (unsigned short a)

unsigned long long fract __fractunshiudq (unsigned
short a)

unsigned short accum __fractunshiuha (unsigned short a)

unsigned accum __fractunshiusa (unsigned short a)

unsigned long accum __fractunshiuda (unsigned short a)

unsigned long long accum __fractunshiuta (unsigned
short a)

short fract __fractunssiqq (unsigned int a)

fract __fractunssihq (unsigned int a)

long fract __fractunssisq (unsigned int a)

long long fract __fractunssidq (unsigned int a)

short accum __fractunssiha (unsigned int a)

accum __fractunssisa (unsigned int a)

long accum __fractunssida (unsigned int a)

long long accum __fractunssita (unsigned int a)

unsigned short fract __fractunssiuqq (unsigned int a)

unsigned fract __fractunssiuhq (unsigned int a)

unsigned long fract __fractunssiusq (unsigned int a)

unsigned long long fract __fractunssiudq (unsigned int
a)

unsigned short accum __fractunssiuha (unsigned int a)

unsigned accum __fractunssiusa (unsigned int a)

unsigned long accum __fractunssiuda (unsigned int a)

unsigned long long accum __fractunssiuta (unsigned int
a)

short fract __fractunsdiqq (unsigned long a)

fract __fractunsdihq (unsigned long a)

long fract __fractunsdisq (unsigned long a)

long long fract __fractunsdidq (unsigned long a)

short accum __fractunsdiha (unsigned long a)

accum __fractunsdisa (unsigned long a)

long accum __fractunsdida (unsigned long a)

long long accum __fractunsdita (unsigned long a)

unsigned short fract __fractunsdiuqq (unsigned long a)

unsigned fract __fractunsdiuhq (unsigned long a)

unsigned long fract __fractunsdiusq (unsigned long a)

unsigned long long fract __fractunsdiudq (unsigned
long a)

unsigned short accum __fractunsdiuha (unsigned long a)

unsigned accum __fractunsdiusa (unsigned long a)

unsigned long accum __fractunsdiuda (unsigned long a)

93

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]



54 GNU Compiler Collection (GCC) Internals

unsigned long long accum __fractunsdiuta (unsigned
long a)

short fract __fractunstiqq (unsigned long long a)

fract __fractunstihq (unsigned long long a)

long fract __fractunstisq (unsigned long long a)

long long fract __fractunstidq (unsigned long long a)

short accum __fractunstiha (unsigned long long a)

accum __fractunstisa (unsigned long long a)

long accum __fractunstida (unsigned long long a)

long long accum __fractunstita (unsigned long long a)

unsigned short fract __fractunstiuqq (unsigned long
long a)

unsigned fract __fractunstiuhq (unsigned long long a)

unsigned long fract __fractunstiusq (unsigned long long
a)

unsigned long long fract
long long a)

unsigned short accum
long a)

unsigned accum _

unsigned long accum
)

unsigned long long accum
long long a)

_fractunstiudq (unsigned

_fractunstiuha (unsigned long

_fractunstiusa (unsigned long long a)
_fractunstiuda (unsigned long long

__fractunstiuta (unsigned

[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]

These functions convert from fractionals to unsigned non-fractionals; and from un-

signed non-fractionals to fractionals, without saturation.

short fract __satfractunsqiqq (unsigned char a)

fract __satfractunsqihq (unsigned char a)

long fract __satfractunsqisq (unsigned char a)

long long fract __satfractunsqidq (unsigned char a)

short accum __satfractunsqiha (unsigned char a)

accum __satfractunsqisa (unsigned char a)

long accum __satfractunsqida (unsigned char a)

long long accum __satfractunsqita (unsigned char a)

unsigned short fract __satfractunsqiuqq (unsigned char
)

unsigned fract __satfractunsqiuhq (unsigned char a)

unsigned long fract __satfractunsqiusq (unsigned char
)

unsigned long long fract
(unsigned char a)

unsigned short accum __satfractunsqiuha (unsigned char
a)

unsigned accum _

unsigned long accum

a)

_satfractunsqiudq

_satfractunsqiusa (unsigned char a)
_satfractunsqiuda (unsigned char

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]



Chapter 4: The GCC low-level runtime library

unsigned long long accum
(unsigned char a)

short fract __satfractunshiqq (unsigned short a)

fract __satfractunshihq (unsigned short a)

long fract __satfractunshisq (unsigned short a)

long long fract __satfractunshidq (unsigned short a)

short accum __satfractunshiha (unsigned short a)

accum __satfractunshisa (unsigned short a)

long accum __satfractunshida (unsigned short a)

long long accum __satfractunshita (unsigned short a)

unsigned short fract __satfractunshiuqq (unsigned
short a)

unsigned fract __satfractunshiuhq (unsigned short a)

unsigned long fract __satfractunshiusq (unsigned short
a)

unsigned long long fract
(unsigned short a)

unsigned short accum
short a)

unsigned accum __satfractunshiusa (unsigned short a)

unsigned long accum __satfractunshiuda (unsigned short
)

unsigned long long accum
(unsigned short a)

short fract __satfractunssiqq (unsigned int a)

fract __satfractunssihq (unsigned int a)

long fract __satfractunssisq (unsigned int a)

long long fract __satfractunssidq (unsigned int a)

short accum __satfractunssiha (unsigned int a)

accum __satfractunssisa (unsigned int a)

long accum __satfractunssida (unsigned int a)

long long accum __satfractunssita (unsigned int a)

unsigned short fract __satfractunssiuqq (unsigned int
)

unsigned fract __satfractunssiuhq (unsigned int a)

unsigned long fract __satfractunssiusq (unsigned int a)

unsigned long long fract __satfractunssiudq
(unsigned int a)

unsigned short accum
a)

unsigned accum __satfractunssiusa (unsigned int a)

unsigned long accum __satfractunssiuda (unsigned int a)

unsigned long long accum __satfractunssiuta
(unsigned int a)

short fract __satfractunsdiqq (unsigned long a)

fract __satfractunsdihq (unsigned long a)

long fract __satfractunsdisq (unsigned long a)

_satfractunsqiuta

_satfractunshiudq

_satfractunshiuha (unsigned

__satfractunshiuta

_satfractunssiuha (unsigned int

95

[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]



56 GNU Compiler Collection (GCC) Internals

long long fract __satfractunsdidq (unsigned long a)

short accum __satfractunsdiha (unsigned long a)

accum __satfractunsdisa (unsigned long a)

long accum __satfractunsdida (unsigned long a)

long long accum __satfractunsdita (unsigned long a)

unsigned short fract __satfractunsdiuqq (unsigned long
a)

unsigned fract __satfractunsdiuhq (unsigned long a)

unsigned long fract __satfractunsdiusq (unsigned long
a)

unsigned long long fract
(unsigned long a)

unsigned short accum
)

unsigned accum __satfractunsdiusa (unsigned long a)

unsigned long accum __satfractunsdiuda (unsigned long
)

unsigned long long accum
(unsigned long a)

short fract __satfractunstiqq (unsigned long long a)

fract __satfractunstihq (unsigned long long a)

long fract __satfractunstisq (unsigned long long a)

long long fract __satfractunstidq (unsigned long long a)

short accum __satfractunstiha (unsigned long long a)

accum __satfractunstisa (unsigned long long a)

long accum __satfractunstida (unsigned long long a)

long long accum __satfractunstita (unsigned long long a)

unsigned short fract __satfractunstiuqq (unsigned long
long a)

unsigned fract __satfractunstiuhq (unsigned long long a)

unsigned long fract __satfractunstiusq (unsigned long
long a)

unsigned long long fract
(unsigned long long a)

unsigned short accum __satfractunstiuha (unsigned long
long a)

unsigned accum __satfractunstiusa (unsigned long long a)

unsigned long accum __satfractunstiuda (unsigned long
long a)

unsigned long long accum
(unsigned long long a)

__satfractunsdiudq

_satfractunsdiuha (unsigned long

_satfractunsdiuta

_satfractunstiudq

_satfractunstiuta

Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function

[ ]
[ ]
[ ]
[ ]
[ ]
[ ]

[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]

These functions convert from unsigned non-fractionals to fractionals, with saturation.

4.5 Language-independent routines for exception handling

document me!

_Unwind_DeleteException



Chapter 4: The GCC low-level runtime library 57

_Unwind_Find_FDE
_Unwind_ForcedUnwind
_Unwind_GetGR

_Unwind_GetIP
_Unwind_GetLanguageSpecificData
_Unwind_GetRegionStart
_Unwind_GetTextRelBase
_Unwind_GetDataRelBase
_Unwind_RaiseException
_Unwind_Resume

_Unwind_SetGR

_Unwind_SetIP
_Unwind_FindEnclosingFunction
_Unwind_SjLj_Register
_Unwind_SjLj_Unregister
_Unwind_SjLj_RaiseException
_Unwind_SjLj_ForcedUnwind
_Unwind_SjLj_Resume
__deregister_frame
__deregister_frame_info
__deregister_frame_info_bases
__register_frame
__register_frame_info
__register_frame_info_bases
__register_frame_info_table
__register_frame_info_table_bases
__register_frame_table

4.6 Miscellaneous runtime library routines
4.6.1 Cache control functions

void __clear_cache (char *beg, char *end) [Runtime Function]
This function clears the instruction cache between beg and end.

4.6.2 Split stack functions and variables

size_t len, void **next_segment, void **next_sp, void **initial_sp)
When using ‘-fsplit-stack’, this call may be used to iterate over the stack segments.
It may be called like this:

void * __splitstack_find (void *segment_arg, void *sp, [Runtime Function]

void *next_segment = NULL;
void *next_sp = NULL;

void *initial_sp = NULL;
void *stack;

size_t stack_size;

while ((stack =

splitstack_find (next_segment, next_sp,
&stack_size, &next_segment,
&next_sp, &initial_sp))
!= NULL)
{
/* Stack segment starts at stack and is
stack_size bytes long. */



58 GNU Compiler Collection (GCC) Internals

There is no way to iterate over the stack segments of a different thread. However,
what is permitted is for one thread to call this with the segment_arg and sp argu-
ments NULL, to pass next_segment, next_sp, and initial_sp to a different thread, and
then to suspend one way or another. A different thread may run the subsequent
__splitstack_find iterations. Of course, this will only work if the first thread is
suspended while the second thread is calling __splitstack_find. If not, the second
thread could be looking at the stack while it is changing, and anything could happen.

__morestack_segments [Variable]
__morestack_current_segment [Variable]
__morestack_initial_sp [Variable]

Internal variables used by the ‘-fsplit-stack’ implementation.



Chapter 5: Language Front Ends in GCC 59

5 Language Front Ends in GCC

The interface to front ends for languages in GCC, and in particular the tree structure (see
Chapter 11 [GENERIC], page 169), was initially designed for C, and many aspects of it
are still somewhat biased towards C and C-like languages. It is, however, reasonably well
suited to other procedural languages, and front ends for many such languages have been
written for GCC.

Writing a compiler as a front end for GCC, rather than compiling directly to assembler
or generating C code which is then compiled by GCC, has several advantages:

e GCC front ends benefit from the support for many different target machines already
present in GCC.

e GCC front ends benefit from all the optimizations in GCC. Some of these, such as
alias analysis, may work better when GCC is compiling directly from source code than
when it is compiling from generated C code.

e Better debugging information is generated when compiling directly from source code
than when going via intermediate generated C code.

Because of the advantages of writing a compiler as a GCC front end, GCC front ends
have also been created for languages very different from those for which GCC was designed,
such as the declarative logic/functional language Mercury. For these reasons, it may also
be useful to implement compilers created for specialized purposes (for example, as part of
a research project) as GCC front ends.






Chapter 6: Source Tree Structure and Build System 61

6 Source Tree Structure and Build System

This chapter describes the structure of the GCC source tree, and how GCC is built. The
user documentation for building and installing GCC is in a separate manual (https://
gcc.gnu.org/install/), with which it is presumed that you are familiar.

6.1 Configure Terms and History

The configure and build process has a long and colorful history, and can be confusing
to anyone who doesn’t know why things are the way they are. While there are other
documents which describe the configuration process in detail, here are a few things that
everyone working on GCC should know.

There are three system names that the build knows about: the machine you are building
on (build), the machine that you are building for (host), and the machine that GCC will
produce code for (target). When you configure GCC, you specify these with ‘--build=’,
‘-~host=’, and ‘--target=".

Specifying the host without specifying the build should be avoided, as configure may
(and once did) assume that the host you specify is also the build, which may not be true.

If build, host, and target are all the same, this is called a native. If build and host are the
same but target is different, this is called a cross. If build, host, and target are all different
this is called a canadian (for obscure reasons dealing with Canada’s political party and the
background of the person working on the build at that time). If host and target are the
same, but build is different, you are using a cross-compiler to build a native for a different
system. Some people call this a host-x-host, crossed native, or cross-built native. If build
and target are the same, but host is different, you are using a cross compiler to build a cross
compiler that produces code for the machine you’re building on. This is rare, so there is no
common way of describing it. There is a proposal to call this a crossback.

If build and host are the same, the GCC you are building will also be used to build the
target libraries (like libstdc++). If build and host are different, you must have already
built and installed a cross compiler that will be used to build the target libraries (if you
configured with ‘--target=foo-bar’, this compiler will be called foo-bar-gcc).

In the case of target libraries, the machine you’re building for is the machine you specified
with ‘--target’. So, build is the machine you’re building on (no change there), host is the
machine you’re building for (the target libraries are built for the target, so host is the target
you specified), and target doesn’t apply (because you're not building a compiler, you're
building libraries). The configure/make process will adjust these variables as needed. It
also sets $with_cross_host to the original ‘--host’ value in case you need it.

The 1libiberty support library is built up to three times: once for the host, once for the
target (even if they are the same), and once for the build if build and host are different.
This allows it to be used by all programs which are generated in the course of the build
process.

6.2 Top Level Source Directory

The top level source directory in a GCC distribution contains several files and directories
that are shared with other software distributions such as that of GNU Binutils. It also
contains several subdirectories that contain parts of GCC and its runtime libraries:


https://gcc.gnu.org/install/
https://gcc.gnu.org/install/

62 GNU Compiler Collection (GCC) Internals

‘boehm-gc’
The Boehm conservative garbage collector, optionally used as part of the ObjC
runtime library when configured with ‘--enable-objc-gc’.

‘config’  Autoconf macros and Makefile fragments used throughout the tree.

‘contrib’ Contributed scripts that may be found useful in conjunction with GCC. One
of these, ‘contrib/texi2pod.pl’, is used to generate man pages from Texinfo
manuals as part of the GCC build process.

‘fixincludes’
The support for fixing system headers to work with GCC. See
‘fixincludes/README’ for more information. The headers fixed by this mech-
anism are installed in ‘Iibsubdir/include-fixed’. Along with those headers,
‘README-fixinc’ is also installed, as ‘1ibsubdir/include-fixed/README’.

gcc The main sources of GCC itself (except for runtime libraries), including op-
timizers, support for different target architectures, language front ends, and
testsuites. See Section 6.3 [The ‘gcc’ Subdirectory], page 63, for details.

‘gnattools’
Support tools for GNAT.

‘include’ Headers for the 1libiberty library.

‘intl’ GNU 1libintl, from GNU gettext, for systems which do not include it in
libc.

‘libada’ The Ada runtime library.

‘libatomic’
The runtime support library for atomic operations (e.g. for __sync and __
atomic).
‘libcpp’  The C preprocessor library.
‘libdecnumber’
The Decimal Float support library.
‘libffi’  The libffi library, used as part of the Go runtime library.
‘libgcc’”  The GCC runtime library.
‘libgfortran’
The Fortran runtime library.
‘libgo’ The Go runtime library. The bulk of this library is mirrored from the master

Go repository.
‘libgomp’ The GNU Offloading and Multi Processing Runtime Library.
‘libiberty’
The libiberty library, used for portability and for some generally useful data

structures and algorithms. See Section “Introduction” in GNU libiberty, for
more information about this library.

‘libitm’  The runtime support library for transactional memory.


https://github.com/golang/go
https://github.com/golang/go

Chapter 6: Source Tree Structure and Build System 63

‘libobjc’ The Objective-C and Objective-C++ runtime library.

‘libquadmath’
The runtime support library for quad-precision math operations.

‘libphobos’
The D standard and runtime library. The bulk of this library is mirrored from
the master D repositories.

‘libssp’  The Stack protector runtime library.

‘libstdc++-v3’
The C++ runtime library.

‘lto-plugin’
Plugin used by the linker if link-time optimizations are enabled.

‘maintainer-scripts’
Scripts used by the gccadmin account on gcc.gnu.org.

‘z1ib’ The z1ib compression library, used for compressing and uncompressing GCC’s
intermediate language in LTO object files.

The build system in the top level directory, including how recursion into subdirectories
works and how building runtime libraries for multilibs is handled, is documented in a sepa-
rate manual, included with GNU Binutils. See Section “GNU configure and build system”
in The GNU configure and build system, for details.

6.3 The ‘gcc’ Subdirectory

The ‘gec’ directory contains many files that are part of the C sources of GCC, other files used
as part of the configuration and build process, and subdirectories including documentation
and a testsuite. The files that are sources of GCC are documented in a separate chapter.
See Chapter 9 [Passes and Files of the Compiler], page 135.

6.3.1 Subdirectories of ‘gcc’

The ‘gcc’ directory contains the following subdirectories:

‘language’

Subdirectories for various languages. Directories containing a file
‘config-lang.in’ are language subdirectories. The contents of the
subdirectories ‘c’ (for C), ‘cp’ (for C++), ‘objc’ (for Objective-C), ‘objcp’
(for Objective-C++), and ‘1to’ (for LTO) are documented in this manual
(see Chapter 9 [Passes and Files of the Compiler|, page 135); those for other
languages are not. See Section 6.3.8 [Anatomy of a Language Front End],
page 71, for details of the files in these directories.

‘common’  Source files shared between the compiler drivers (such as gcc) and the compilers
proper (such as ‘cc1’). If an architecture defines target hooks shared between
those places, it also has a subdirectory in ‘common/config’. See Section 18.1
[Target Structure|, page 503.


https://github.com/dlang

64 GNU Compiler Collection (GCC) Internals

‘config’  Configuration files for supported architectures and operating systems. See
Section 6.3.9 [Anatomy of a Target Back End], page 75, for details of the files
in this directory.

Texinfo documentation for GCC, together with automatically generated man
pages and support for converting the installation manual to HTML. See
Section 6.3.7 [Documentation|, page 69.

‘doc

‘ginclude’
System headers installed by GCC, mainly those required by the C standard of
freestanding implementations. See Section 6.3.6 [Headers Installed by GCC],
page 68, for details of when these and other headers are installed.

po Message catalogs with translations of messages produced by GCC into various
languages, ‘language.po’. This directory also contains ‘gcc.pot’, the template
for these message catalogues, ‘exgettext’, a wrapper around gettext to ex-
tract the messages from the GCC sources and create ‘gcc.pot’, which is run
by ‘make gcc.pot’, and ‘EXCLUDES’, a list of files from which messages should
not be extracted.

‘testsuite’
The GCC testsuites (except for those for runtime libraries). See Chapter 7
[Testsuites|, page 79.

6.3.2 Configuration in the ‘gcc’ Directory

The ‘gcc’ directory is configured with an Autoconf-generated script ‘configure’. The
‘configure’ script is generated from ‘configure.ac’ and ‘aclocal.m4’. From the files
‘configure.ac’ and ‘acconfig.h’, Autoheader generates the file ‘config.in’. The file
‘cstamp-h.in’ is used as a timestamp.

6.3.2.1 Scripts Used by ‘configure’

‘configure’ uses some other scripts to help in its work:

e The standard GNU ‘config.sub’ and ‘config.guess’ files, kept in the top level direc-
tory, are used.

e The file ‘config.gcc’ is used to handle configuration specific to the particular target
machine. The file ‘config.build’ is used to handle configuration specific to the par-
ticular build machine. The file ‘config.host’ is used to handle configuration specific
to the particular host machine. (In general, these should only be used for features
that cannot reasonably be tested in Autoconf feature tests.) See Section 6.3.2.2 [The
‘config.build’; ‘config.host’; and ‘config.gcc’ Files], page 65, for details of the
contents of these files.

e Fach language subdirectory has a file ‘language/config-lang.in’ that is used for
front-end-specific configuration. See Section 6.3.8.2 [The Front End ‘config-lang.in’
File], page 73, for details of this file.

e A helper script ‘configure.frag’ is used as part of creating the output of ‘configure’.



Chapter 6: Source Tree Structure and Build System 65

6.3.2.2 The ‘config.build’; ‘config.host’; and ‘config.gcc’ Files

The ‘config.build’ file contains specific rules for particular systems which GCC is built
on. This should be used as rarely as possible, as the behavior of the build system can always
be detected by autoconf.

The ‘config.host’ file contains specific rules for particular systems which GCC will run
on. This is rarely needed.

The ‘config.gcc’ file contains specific rules for particular systems which GCC will gen-
erate code for. This is usually needed.

Each file has a list of the shell variables it sets, with descriptions, at the top of the file.

FIXME: document the contents of these files, and what variables should be set to control
build, host and target configuration.

6.3.2.3 Files Created by configure

Here we spell out what files will be set up by ‘configure’ in the ‘gcc’ directory. Some
other files are created as temporary files in the configuration process, and are not used in
the subsequent build; these are not documented.

e ‘Makefile’is constructed from ‘Makefile.in’, together with the host and target frag-
ments (see Chapter 20 [Makefile Fragments|, page 695) ‘t-target’ and ‘x-host’ from
‘config’, if any, and language Makefile fragments ‘language/Make-lang.in’.

e ‘auto-host.h’ contains information about the host machine determined by
‘configure’. If the host machine is different from the build machine, then
‘auto-build.h’ is also created, containing such information about the build machine.

e ‘config.status’ is a script that may be run to recreate the current configuration.

e ‘configargs.h’is a header containing details of the arguments passed to ‘configure’
to configure GCC, and of the thread model used.

e ‘cstamp-h’ is used as a timestamp.

e If a language ‘config-lang.in’ file (see Section 6.3.8.2 [The Front End
‘config-lang.in’ File], page 73) sets outputs, then the files listed in outputs there
are also generated.

The following configuration headers are created from the Makefile, using ‘mkconfig.sh’,
rather than directly by ‘configure’. ‘config.h’, ‘bconfig.h’ and ‘tconfig.h’ all contain
the ‘xm-machine.h’ header, if any, appropriate to the host, build and target machines
respectively, the configuration headers for the target, and some definitions; for the host
and build machines, these include the autoconfigured headers generated by ‘configure’.
The other configuration headers are determined by ‘config.gcc’. They also contain the
typedefs for rtx, rtvec and tree.

e ‘config.h’, for use in programs that run on the host machine.
e ‘beconfig.h’; for use in programs that run on the build machine.
e ‘tconfig.h’, for use in programs and libraries for the target machine.

e ‘tm_p.h’, which includes the header ‘machine-protos.h’ that contains prototypes for
functions in the target ‘machine.c’ file. The ‘machine-protos.h’ header is included
after the ‘rt1.h’ and/or ‘tree.h’ would have been included. The ‘tm_p.h’ also includes
the header ‘tm-preds.h’ which is generated by ‘genpreds’ program during the build
to define the declarations and inline functions for the predicate functions.



66

GNU Compiler Collection (GCC) Internals

6.3.3 Build System in the ‘gcc’ Directory

FIXME: describe the build system, including what is built in what stages. Also list the
various source files that are used in the build process but aren’t source files of GCC itself
and so aren’t documented below (see Chapter 9 [Passes|, page 135).

6.3.4 Makefile Targets

These targets are available from the ‘gcc’ directory:

all This is the default target. Depending on what your build /host/target configu-
ration is, it coordinates all the things that need to be built.

doc Produce info-formatted documentation and man pages. Essentially it calls
‘make man’ and ‘make info’.

dvi Produce DVI-formatted documentation.

pdf Produce PDF-formatted documentation.

html Produce HTML-formatted documentation.

man Generate man pages.

info Generate info-formatted pages.

mostlyclean
Delete the files made while building the compiler.

clean That, and all the other files built by ‘make all’.

distclean

That, and all the files created by configure.

maintainer-clean

srcextra

srcinfo
srcman

install

uninstall

check

Distclean plus any file that can be generated from other files. Note that addi-
tional tools may be required beyond what is normally needed to build GCC.

Generates files in the source directory that are not version-controlled but should
go into a release tarball.

Copies the info-formatted and manpage documentation into the source directory
usually for the purpose of generating a release tarball.

Installs GCC.

Deletes installed files, though this is not supported.

Run the testsuite. This creates a ‘testsuite’ subdirectory that has various
‘.sum’ and ‘.log’ files containing the results of the testing. You can run subsets
with, for example, ‘make check-gcc’. You can specify specific tests by setting
RUNTESTFLAGS to be the name of the ‘.exp’ file, optionally followed by (for
some tests) an equals and a file wildcard, like:

make check-gcc RUNTESTFLAGS="execute.exp=19980413-*"

Note that running the testsuite may require additional tools be installed, such
as Tcl or DejaGnu.



Chapter 6: Source Tree Structure and Build System 67

The toplevel tree from which you start GCC compilation is not the GCC directory,
but rather a complex Makefile that coordinates the various steps of the build, including
bootstrapping the compiler and using the new compiler to build target libraries.

When GCC is configured for a native configuration, the default action for make is to
do a full three-stage bootstrap. This means that GCC is built three times—once with the
native compiler, once with the native-built compiler it just built, and once with the compiler
it built the second time. In theory, the last two should produce the same results, which
‘make compare’ can check. Each stage is configured separately and compiled into a separate

directory, to minimize problems due to ABI incompatibilities between the native compiler
and GCC.

If you do a change, rebuilding will also start from the first stage and “bubble” up the
change through the three stages. Each stage is taken from its build directory (if it had
been built previously), rebuilt, and copied to its subdirectory. This will allow you to, for
example, continue a bootstrap after fixing a bug which causes the stage2 build to crash.
It does not provide as good coverage of the compiler as bootstrapping from scratch, but it
ensures that the new code is syntactically correct (e.g., that you did not use GCC extensions
by mistake), and avoids spurious bootstrap comparison failures'.

Other targets available from the top level include:

bootstrap-lean
Like bootstrap, except that the various stages are removed once they’re no
longer needed. This saves disk space.

bootstrap2

bootstrap2-lean
Performs only the first two stages of bootstrap. Unlike a three-stage bootstrap,
this does not perform a comparison to test that the compiler is running prop-
erly. Note that the disk space required by a “lean” bootstrap is approximately
independent of the number of stages.

stageN-bubble (N=1...4, profile, feedback)
Rebuild all the stages up to N, with the appropriate flags, “bubbling” the
changes as described above.

all-stageN (N=1...4, profile, feedback)
Assuming that stage N has already been built, rebuild it with the appropriate
flags. This is rarely needed.

cleanstrap
Remove everything (‘make clean’) and rebuilds (‘make bootstrap’).

compare  Compares the results of stages 2 and 3. This ensures that the compiler is
running properly, since it should produce the same object files regardless of
how it itself was compiled.

profiledbootstrap
Builds a compiler with profiling feedback information. In this case, the second
and third stages are named ‘profile’ and ‘feedback’, respectively. For more
information, see the installation instructions.

1 Except if the compiler was buggy and miscompiled some of the files that were not modified. In this case,
it’s best to use make restrap.



68 GNU Compiler Collection (GCC) Internals

restrap Restart a bootstrap, so that everything that was not built with the system
compiler is rebuilt.

stageN-start (N=1...4, profile, feedback)
For each package that is bootstrapped, rename directories so that, for example,
‘gce’ points to the stageN GCC, compiled with the stageN-1 GCC?.

You will invoke this target if you need to test or debug the stageN GCC. If
you only need to execute GCC (but you need not run ‘make’ either to rebuild it
or to run test suites), you should be able to work directly in the ‘stageN-gcc’
directory. This makes it easier to debug multiple stages in parallel.

stage For each package that is bootstrapped, relocate its build directory to indicate
its stage. For example, if the ‘gcc’ directory points to the stage2 GCC, after
invoking this target it will be renamed to ‘stage2-gcc’.

If you wish to use non-default GCC flags when compiling the stage2 and stage3 compilers,
set BOOT_CFLAGS on the command line when doing ‘make’.

Usually, the first stage only builds the languages that the compiler is written in: typically,
C and maybe Ada. If you are debugging a miscompilation of a different stage2 front-end (for
example, of the Fortran front-end), you may want to have front-ends for other languages in
the first stage as well. To do so, set STAGE1_LANGUAGES on the command line when doing
‘make’.

For example, in the aforementioned scenario of debugging a Fortran front-end miscompi-
lation caused by the stagel compiler, you may need a command like

make stage2-bubble STAGE1_LANGUAGES=c,fortran

Alternatively, you can use per-language targets to build and test languages that are not
enabled by default in stagel. For example, make £951 will build a Fortran compiler even in
the stagel build directory.

6.3.5 Library Source Files and Headers under the ‘gcc’ Directory

FIXME: list here, with explanation, all the C source files and headers under the ‘gcc’
directory that aren’t built into the GCC executable but rather are part of runtime libraries
and object files, such as ‘crtstuff.c’ and ‘unwind-dw2.c’. See Section 6.3.6 [Headers
Installed by GCC], page 68, for more information about the ‘ginclude’ directory.

6.3.6 Headers Installed by GCC

In general, GCC expects the system C library to provide most of the headers to be used
with it. However, GCC will fix those headers if necessary to make them work with GCC,
and will install some headers required of freestanding implementations. These headers are
installed in ‘1ibsubdir/include’. Headers for non-C runtime libraries are also installed by
GCC; these are not documented here. (FIXME: document them somewhere.)

Several of the headers GCC installs are in the ‘ginclude’ directory. These
headers, ‘iso646.h’, ‘stdarg.h’, ‘stdbool.h’; and ‘stddef.h’, are installed in
‘libsubdir/include’, unless the target Makefile fragment (see Section 20.1 [Target
Fragment|, page 695) overrides this by setting USER_H.

2 Customarily, the system compiler is also termed the ‘stage0’ GCC.



Chapter 6: Source Tree Structure and Build System 69

In addition to these headers and those generated by fixing system headers to work with
GCC, some other headers may also be installed in ‘Iibsubdir/include’. ‘config.gcc’
may set extra_headers; this specifies additional headers under ‘config’ to be installed on
some systems.

GCC installs its own version of <float.h>, from ‘ginclude/float.h’. This is done to
cope with command-line options that change the representation of floating point numbers.

GCC also installs its own version of <1imits.h>; this is generated from ‘glimits.h’; to-
gether with ‘1imitx.h’ and ‘1imity.h’ if the system also has its own version of <limits.h>.
(GCC provides its own header because it is required of ISO C freestanding implementations,
but needs to include the system header from its own header as well because other stan-
dards such as POSIX specify additional values to be defined in <1imits.h>.) The system’s
<limits.h> header is used via ‘libsubdir/include/syslimits.h’, which is copied from
‘gsyslimits.h’ if it does not need fixing to work with GCC; if it needs fixing, ‘syslimits.h’
is the fixed copy.

GCC can also install <tgmath.h>. It will do this when ‘config.gcc’ sets use_gcc_tgmath
to yes.

6.3.7 Building Documentation

The main GCC documentation is in the form of manuals in Texinfo format. These are
installed in Info format; DVI versions may be generated by ‘make dvi’, PDF versions by
‘make pdf’, and HTML versions by ‘make html’. In addition, some man pages are generated
from the Texinfo manuals, there are some other text files with miscellaneous documentation,
and runtime libraries have their own documentation outside the ‘gcc’ directory. FIXME:
document the documentation for runtime libraries somewhere.

6.3.7.1 Texinfo Manuals

The manuals for GCC as a whole, and the C and C++ front ends, are in files ‘doc/*.texi’.
Other front ends have their own manuals in files ‘language/*.texi’. Common files
‘doc/include/*.texi’ are provided which may be included in multiple manuals; the
following files are in ‘doc/include’:

‘fdl.texi’
The GNU Free Documentation License.

‘funding.texi’
The section “Funding Free Software”.

‘gcc—-common. texi’
Common definitions for manuals.

‘gpl_v3.texi’
The GNU General Public License.

‘texinfo.tex’
A copy of ‘texinfo.tex’ known to work with the GCC manuals.

DVI-formatted manuals are generated by ‘make dvi’, which uses texi2dvi (via the Make-
file macro $ (TEXI2DVI)). PDF-formatted manuals are generated by ‘make pdf’, which uses
texi2pdf (via the Makefile macro $ (TEXI2PDF)). HTML formatted manuals are generated



70 GNU Compiler Collection (GCC) Internals

by ‘make html’. Info manuals are generated by ‘make info’ (which is run as part of a boot-
strap); this generates the manuals in the source directory, using makeinfo via the Makefile
macro $ (MAKEINFQ), and they are included in release distributions.

Manuals are also provided on the GCC web site, in both HTML and PostScript forms.
This is done via the script ‘maintainer-scripts/update_web_docs_git’. Each manual to
be provided online must be listed in the definition of MANUALS in that file; a file ‘name. texi’
must only appear once in the source tree, and the output manual must have the same
name as the source file. (However, other Texinfo files, included in manuals but not them-
selves the root files of manuals, may have names that appear more than once in the source
tree.) The manual file ‘name.texi’ should only include other files in its own directory or in
‘doc/include’. HTML manuals will be generated by ‘makeinfo --html’, PostScript manu-
als by texi2dvi and dvips, and PDF manuals by texi2pdf. All Texinfo files that are parts
of manuals must be version-controlled, even if they are generated files, for the generation
of online manuals to work.

The installation manual, ‘doc/install.texi’, is also provided on the GCC web site. The
HTML version is generated by the script ‘doc/install.texi2html’.

6.3.7.2 Man Page Generation

Because of user demand, in addition to full Texinfo manuals, man pages are provided which
contain extracts from those manuals. These man pages are generated from the Texinfo
manuals using ‘contrib/texi2pod.pl’ and pod2man. (The man page for g++, ‘cp/g++.1,
just contains a ‘.so’ reference to ‘gcc.1’, but all the other man pages are generated from
Texinfo manuals.)

Because many systems may not have the necessary tools installed to generate the man
pages, they are only generated if the ‘configure’ script detects that recent enough tools
are installed, and the Makefiles allow generating man pages to fail without aborting the
build. Man pages are also included in release distributions. They are generated in the
source directory.

Magic comments in Texinfo files starting ‘@c man’ control what parts of a Texinfo file
go into a man page. Only a subset of Texinfo is supported by ‘texi2pod.pl’, and it may
be necessary to add support for more Texinfo features to this script when generating new
man pages. To improve the man page output, some special Texinfo macros are provided in
‘doc/include/gcc-common. texi’ which ‘texi2pod.pl’ understands:

@gcctabopt
Use in the form ‘@table @gcctabopt’ for tables of options, where for printed
output the effect of ‘G@code’ is better than that of ‘@option’ but for man page
output a different effect is wanted.

@gccoptlist
Use for summary lists of options in manuals.

Qgol Use at the end of each line inside ‘@gccoptlist’. This is necessary to avoid
problems with differences in how the ‘@gccoptlist’ macro is handled by dif-
ferent Texinfo formatters.

FIXME: describe the ‘texi2pod.pl’ input language and magic comments in more detail.



Chapter 6: Source Tree Structure and Build System 71

6.3.7.3 Miscellaneous Documentation

In addition to the formal documentation that is installed by GCC, there are several other
text files in the ‘gcc’ subdirectory with miscellaneous documentation:

‘ABOUT-GCC-NLS’
Notes on GCC’s Native Language Support. FIXME: this should be part of this
manual rather than a separate file.

‘ABOUT-NLS’
Notes on the Free Translation Project.

‘COPYING’
‘COPYING3’
The GNU General Public License, Versions 2 and 3.

‘COPYING.LIB’
‘COPYING3.LIB’
The GNU Lesser General Public License, Versions 2.1 and 3.

‘*ChangeLog*’
‘x/ChangeLog*’
Change log files for various parts of GCC.

‘LANGUAGES’
Details of a few changes to the GCC front-end interface. FIXME: the infor-
mation in this file should be part of general documentation of the front-end
interface in this manual.

‘ONEWS’ Information about new features in old versions of GCC. (For recent versions,
the information is on the GCC web site.)

‘README.Portability’
Information about portability issues when writing code in GCC. FIXME: why
isn’t this part of this manual or of the GCC Coding Conventions?

[P 4 )

FIXME: document such files in subdirectories, at least ‘config’, ‘c’, ‘cp’, ‘objc’,
‘testsuite’.

6.3.8 Anatomy of a Language Front End

A front end for a language in GCC has the following parts:
e A directory ‘language’ under ‘gcc’ containing source files for that front end. See
Section 6.3.8.1 [The Front End ‘language’ Directory], page 72, for details.
e A mention of the language in the list of supported languages in ‘gcc/doc/install.texi’ ]
e A mention of the name under which the language’s runtime library is recog-

nized by ‘--enable-shared=package’ in the documentation of that option in
‘gcc/doc/install.texi’.

e A mention of any special prerequisites for building the front end in the documentation
of prerequisites in ‘gcc/doc/install.texi’.

e Details of contributors to that front end in ‘gcc/doc/contrib.texi’. If the details are
in that front end’s own manual then there should be a link to that manual’s list in
‘contrib.texi’.



72 GNU Compiler Collection (GCC) Internals

e Information about support for that language in ‘gcc/doc/frontends.texi’.

e Information about standards for that language, and the front end’s support for them,
in ‘gcc/doc/standards.texi’. This may be a link to such information in the front
end’s own manual.

e Details of source file suffixes for that language and ‘-x lang’ options supported, in
‘gcc/doc/invoke. texi’.

e Entries in default_compilers in ‘gce.cc’ for source file suffixes for that language.

e Preferably testsuites, which may be under ‘gcc/testsuite’ or runtime library direc-
tories. FIXME: document somewhere how to write testsuite harnesses.

e Probably a runtime library for the language, outside the ‘gcc’ directory. FIXME:
document this further.

e Details of the directories of any runtime libraries in ‘gcc/doc/sourcebuild.texi’.

e Check targets in ‘Makefile.def’ for the top-level ‘Makefile’ to check just the compiler
or the compiler and runtime library for the language.

If the front end is added to the official GCC source repository, the following are also
necessary:

e At least one Bugzilla component for bugs in that front end and runtime libraries. This
category needs to be added to the Bugzilla database.

e Normally, one or more maintainers of that front end listed in ‘MAINTAINERS’.

e Mentions on the GCC web site in ‘index.html’ and ‘frontends.html’, with any rele-
vant links on ‘readings.html’. (Front ends that are not an official part of GCC may
also be listed on ‘frontends.html’, with relevant links.)

e A news item on ‘index.html’, and possibly an announcement on the
gcc-announce@gcc. gnu.org mailing list.

e The front end’s manuals should be mentioned in ‘maintainer-scripts/update_web_docs_git’}]
(see Section 6.3.7.1 [Texinfo Manuals], page 69) and the online manuals should be
linked to from ‘onlinedocs/index.html’.

e Any old releases or CVS repositories of the front end, before its inclusion in GCC,
should be made available on the GCC web site at https://gcc.gnu.org/pub/gecc/
old-releases/.

e The release and snapshot script ‘maintainer-scripts/gcc_release’ should be up-
dated to generate appropriate tarballs for this front end.

e If this front end includes its own version files that include the current date,
‘maintainer-scripts/update_version’ should be updated accordingly.

6.3.8.1 The Front End ‘language’ Directory

A front end ‘language’ directory contains the source files of that front end (but not of any
runtime libraries, which should be outside the ‘gcc’ directory). This includes documenta-
tion, and possibly some subsidiary programs built alongside the front end. Certain files are
special and other parts of the compiler depend on their names:

‘config-lang.in’
This file is required in all language subdirectories. See Section 6.3.8.2 [The
Front End ‘config-lang.in’ File], page 73, for details of its contents


mailto:gcc-announce@gcc.gnu.org
https://gcc.gnu.org/pub/gcc/old-releases/
https://gcc.gnu.org/pub/gcc/old-releases/

Chapter 6: Source Tree Structure and Build System 73

‘Make-lang.in’
This file is required in all language subdirectories. See Section 6.3.8.3 [The
Front End ‘Make-lang.in’ File], page 74, for details of its contents.

‘lang.opt’
This file registers the set of switches that the front end accepts on the command
line, and their ‘--help’ text. See Chapter 8 [Options|, page 125.

‘lang-specs.h’
This file provides entries for default_compilers in ‘gcc.cc’ which override
the default of giving an error that a compiler for that language is not installed.

‘language-tree.def’
This file, which need not exist, defines any language-specific tree codes.

6.3.8.2 The Front End ‘config-lang.in’ File

Each language subdirectory contains a ‘config-lang.in’ file. This file is a shell script that
may define some variables describing the language:

language This definition must be present, and gives the name of the language for some
purposes such as arguments to ‘~—enable-languages’.

lang_requires
If defined, this variable lists (space-separated) language front ends other than
C that this front end requires to be enabled (with the names given being their
language settings). For example, the Obj-C++ front end depends on the C++
and ObjC front ends, so sets ‘lang_requires="objc c++"’.

subdir_requires
If defined, this variable lists (space-separated) front end directories other than
C that this front end requires to be present. For example, the Objective-C++
front end uses source files from the C++ and Objective-C front ends, so sets
‘subdir_requires="cp objc"’.

target_libs
If defined, this variable lists (space-separated) targets in the top level ‘Makefile’
to build the runtime libraries for this language, such as target-1libobjc.

lang_dirs
If defined, this variable lists (space-separated) top level directories (parallel to
‘gec’), apart from the runtime libraries, that should not be configured if this
front end is not built.

build_by_default
If defined to ‘no’, this language front end is not built unless enabled in a
‘-—enable-languages’ argument. Otherwise, front ends are built by default,
subject to any special logic in ‘configure.ac’ (as is present to disable the Ada
front end if the Ada compiler is not already installed).

boot_language
If defined to ‘yes’, this front end is built in stagel of the bootstrap. This is
only relevant to front ends written in their own languages.



74 GNU Compiler Collection (GCC) Internals

compilers
If defined, a space-separated list of compiler executables that will be run by the
driver. The names here will each end with ‘\$ (exeext)’.

outputs  If defined, a space-separated list of files that should be generated by ‘configure’
substituting values in them. This mechanism can be used to create a file
‘language/Makefile’ from ‘language/Makefile.in’, but this is deprecated,
building everything from the single ‘gcc/Makefile’ is preferred.

gtfiles If defined, a space-separated list of files that should be scanned by
‘gengtype.cc’ to generate the garbage collection tables and routines for this
language. This excludes the files that are common to all front ends. See
Chapter 23 [Type Information], page 703.

6.3.8.3 The Front End ‘Make-lang.in’ File

Each language subdirectory contains a ‘Make-lang.in’ file. It contains targets lang.hook
(where lang is the setting of language in ‘config-lang.in’) for the following values of
hook, and any other Makefile rules required to build those targets (which may if necessary
use other Makefiles specified in outputs in ‘config-lang.in’, although this is deprecated).
It also adds any testsuite targets that can use the standard rule in ‘gcc/Makefile.in’ to
the variable lang_checks.

all.cross
start.encap
rest.encap
FIXME: exactly what goes in each of these targets?

tags Build an etags ‘TAGS’ file in the language subdirectory in the source tree.

info Build info documentation for the front end, in the build directory. This target
is only called by ‘make bootstrap’ if a suitable version of makeinfo is available,
so does not need to check for this, and should fail if an error occurs.

dvi Build DVI documentation for the front end, in the build directory. This should
be done using $(TEXI2DVI), with appropriate ‘-I’ arguments pointing to di-
rectories of included files.

pdf Build PDF documentation for the front end, in the build directory. This should
be done using $(TEXI2PDF), with appropriate ‘-I’ arguments pointing to di-
rectories of included files.

html Build HTML documentation for the front end, in the build directory.

man Build generated man pages for the front end from Texinfo manuals (see
Section 6.3.7.2 [Man Page Generation|, page 70), in the build directory. This
target is only called if the necessary tools are available, but should ignore
errors so as not to stop the build if errors occur; man pages are optional and
the tools involved may be installed in a broken way.

install-common
Install everything that is part of the front end, apart from the compiler exe-
cutables listed in compilers in ‘config-lang.in’.



Chapter 6: Source Tree Structure and Build System 75

install-info
Install info documentation for the front end, if it is present in the source direc-
tory. This target should have dependencies on info files that should be installed.

install-man
Install man pages for the front end. This target should ignore errors.

install-plugin
Install headers needed for plugins.

srcextra Copies its dependencies into the source directory. This generally should be used
for generated files such as Bison output files which are not version-controlled,
but should be included in any release tarballs. This target will be executed
during a bootstrap if ‘-—enable-generated-files-in-srcdir’ was specified
as a ‘configure’ option.

srcinfo

srcman Copies its dependencies into the source directory. These targets will be executed
during a bootstrap if ‘--enable-generated-files-in-srcdir’ was specified
as a ‘configure’ option.

uninstall
Uninstall files installed by installing the compiler. This is currently documented
not to be supported, so the hook need not do anything.

mostlyclean

clean

distclean

maintainer-clean
The language parts of the standard GNU ‘*clean’ targets. See Section “Stan-
dard Targets for Users” in GNU Coding Standards, for details of the standard
targets. For GCC, maintainer-clean should delete all generated files in the
source directory that are not version-controlled, but should not delete anything
that is.

‘Make-lang.in’ must also define a variable l1ang_0BJS to a list of host object files that
are used by that language.

6.3.9 Anatomy of a Target Back End
A back end for a target architecture in GCC has the following parts:

e A directory ‘machine’ under ‘gcc/config’, containing a machine description
‘machine.md’ file (see Chapter 17 [Machine Descriptions|, page 353), header files
‘machine.h’ and ‘machine-protos.h’ and a source file ‘machine.c’ (see Chapter 18
[Target Description Macros and Functions|, page 503), possibly a target Makefile
fragment ‘t-machine’ (see Section 20.1 [The Target Makefile Fragment|, page 695),
and maybe some other files. The names of these files may be changed from the
defaults given by explicit specifications in ‘config.gcc’.

e If necessary, a file ‘machine-modes.def’ in the ‘machine’ directory, containing addi-
tional machine modes to represent condition codes. See Section 18.15 [Condition Code],
page 596, for further details.



76 GNU Compiler Collection (GCC) Internals

e An optional ‘machine.opt’ file in the ‘machine’ directory, containing a list of target-
specific options. You can also add other option files using the extra_options variable
in ‘config.gcc’. See Chapter 8 [Options], page 125.

e Entries in ‘config.gcc’ (see Section 6.3.2.2 [The ‘config.gcc’ File|, page 65) for the
systems with this target architecture.

e Documentation in ‘gcc/doc/invoke. texi’ for any command-line options supported by
this target (see Section 18.3 [Run-time Target Specification], page 510). This means
both entries in the summary table of options and details of the individual options.

e Documentation in ‘gcc/doc/extend.texi’ for any target-specific attributes supported
(see Section 18.24 [Defining target-specific uses of __attribute__|, page 657), including
where the same attribute is already supported on some targets, which are enumerated
in the manual.

e Documentation in ‘gcc/doc/extend.texi’ for any target-specific pragmas supported.

e Documentation in ‘gcc/doc/extend. texi’ of any target-specific built-in functions sup-
ported.

e Documentation in ‘gcc/doc/extend. texi’ of any target-specific format checking styles
supported.

e Documentation in ‘gcc/doc/md.texi’ of any target-specific constraint letters (see
Section 17.8.5 [Constraints for Particular Machines], page 373).

e A note in ‘gcc/doc/contrib.texi’ under the person or people who contributed the
target support.

e Entries in ‘gcc/doc/install.texi’ for all target triplets supported with this target
architecture, giving details of any special notes about installation for this target, or
saying that there are no special notes if there are none.

e Possibly other support outside the ‘gcc’ directory for runtime libraries. FIXME: ref-
erence docs for this. The 1ibstdc++ porting manual needs to be installed as info for
this to work, or to be a chapter of this manual.

The ‘machine.h’ header is included very early in GCC’s standard sequence of header files,
while ‘machine-protos.h’ is included late in the sequence. Thus ‘machine-protos.h’ can
include declarations referencing types that are not defined when ‘machine.h’ is included,
specifically including those from ‘rtl.h’ and ‘tree.h’. Since both RTL and tree types may
not be available in every context where ‘machine-protos.h’ is included, in this file you
should guard declarations using these types inside appropriate #ifdef RTX_CODE or #ifdef
TREE_CODE conditional code segments.

If the backend uses shared data structures that require GTY markers for garbage collection
(see Chapter 23 [Type Information]|, page 703), you must declare those in ‘machine.h’
rather than ‘machine-protos.h’. Any definitions required for building libgce must also go
in ‘machine.h’.

GCC uses the macro IN_TARGET_CODE to distinguish between machine-specific ‘.c’ and
‘.cc’ files and machine-independent ‘.c’ and ‘.cc’ files. Machine-specific files should use
the directive:

#define IN_TARGET_CODE 1

before including config.h.



Chapter 6: Source Tree Structure and Build System 77

If the back end is added to the official GCC source repository, the following are also
necessary:

An entry for the target architecture in ‘readings.html’ on the GCC web site, with
any relevant links.

Details of the properties of the back end and target architecture in ‘backends.html’
on the GCC web site.

A news item about the contribution of support for that target architecture, in
‘index.html’ on the GCC web site.

Normally, one or more maintainers of that target listed in ‘MAINTAINERS’. Some existing
architectures may be unmaintained, but it would be unusual to add support for a target
that does not have a maintainer when support is added.

Target triplets covering all ‘config.gcc’ stanzas for the target, in the list in
‘contrib/config-list.mk’.






Chapter 7: Testsuites 79

7 Testsuites

GCC contains several testsuites to help maintain compiler quality. Most of the runtime
libraries and language front ends in GCC have testsuites. Currently only the C language
testsuites are documented here; FIXME: document the others.

7.1 Idioms Used in Testsuite Code

In general, C testcases have a trailing ‘-n.c’, starting with ‘-1.c’, in case other testcases
with similar names are added later. If the test is a test of some well-defined feature, it
should have a name referring to that feature such as ‘feature-1.c’. If it does not test a
well-defined feature but just happens to exercise a bug somewhere in the compiler, and a
bug report has been filed for this bug in the GCC bug database, ‘prbug-number-1.c’ is
the appropriate form of name. Otherwise (for miscellaneous bugs not filed in the GCC bug
database), and previously more generally, test cases are named after the date on which they
were added. This allows people to tell at a glance whether a test failure is because of a
recently found bug that has not yet been fixed, or whether it may be a regression, but does
not give any other information about the bug or where discussion of it may be found. Some
other language testsuites follow similar conventions.

In the ‘gcc.dg’ testsuite, it is often necessary to test that an error is indeed a hard error
and not just a warning—for example, where it is a constraint violation in the C standard,
which must become an error with ‘-pedantic-errors’. The following idiom, where the
first line shown is line line of the file and the line that generates the error, is used for this:

/* { dg-bogus "warning" "warning in place of error" } x/
/* { dg-error "regexp" "message" { target *-x-x } line } */

It may be necessary to check that an expression is an integer constant expression and has
a certain value. To check that E has value V, an idiom similar to the following is used:

char x[((E) == (V) 71 : -1)];

In ‘gcc.dg’ tests, __typeof__ is sometimes used to make assertions about the types of
expressions. See, for example, ‘gcc.dg/c99-condexpr-1.c’. The more subtle uses depend
on the exact rules for the types of conditional expressions in the C standard; see, for example,
‘gcc.dg/c99-intconst-1.c’.

It is useful to be able to test that optimizations are being made properly. This cannot
be done in all cases, but it can be done where the optimization will lead to code being
optimized away (for example, where flow analysis or alias analysis should show that certain
code cannot be called) or to functions not being called because they have been expanded
as built-in functions. Such tests go in ‘gcc.c-torture/execute’. Where code should be
optimized away, a call to a nonexistent function such as 1link_failure () may be inserted;
a definition

#ifndef __OPTIMIZE__
void

link_failure (void)
{

abort ();

}
#endif



80 GNU Compiler Collection (GCC) Internals

will also be needed so that linking still succeeds when the test is run without optimization.
When all calls to a built-in function should have been optimized and no calls to the non-
built-in version of the function should remain, that function may be defined as static to
call abort () (although redeclaring a function as static may not work on all targets).

All testcases must be portable. Target-specific testcases must have appropriate code to
avoid causing failures on unsupported systems; unfortunately, the mechanisms for this differ
by directory.

FIXME: discuss non-C testsuites here.

7.2 Directives used within DejaGnu tests

7.2.1 Syntax and Descriptions of test directives

Test directives appear within comments in a test source file and begin with dg-. Some of
these are defined within DejaGnu and others are local to the GCC testsuite.

The order in which test directives appear in a test can be important: directives local to
GCC sometimes override information used by the DejaGnu directives, which know nothing
about the GCC directives, so the DejaGnu directives must precede GCC directives.

Several test directives include selectors (see Section 7.2.2 [Selectors], page 84) which are
usually preceded by the keyword target or xfail.

7.2.1.1 Specify how to build the test

{ dg-do do-what-keyword [{ target/xfail selector }] }
do-what-keyword specifies how the test is compiled and whether it is executed.
It is one of:

preprocess
Compile with ‘-E’ to run only the preprocessor.

compile  Compile with ‘-S’ to produce an assembly code file.
assemble Compile with ‘=c’ to produce a relocatable object file.
link Compile, assemble, and link to produce an executable file.

run Produce and run an executable file, which is expected to return an
exit code of 0.

The default is compile. That can be overridden for a set of tests by redefining
dg-do-what-default within the .exp file for those tests.

If the directive includes the optional ‘{ target selector } then the test is
skipped unless the target system matches the selector.

If do-what-keyword is run and the directive includes the optional ‘{ xfail
selector }’ and the selector is met then the test is expected to fail. The
xfail clause is ignored for other values of do-what-keyword; those tests can
use directive dg-xfail-if.



Chapter 7: Testsuites 81

7.2.1.2 Specify additional compiler options

{ dg-options options [{ target selector }] }
This DejaGnu directive provides a list of compiler options, to be used if the
target system matches selector, that replace the default options used for this
set of tests.

{ dg-add-options feature ... }
Add any compiler options that are needed to access certain features. This
directive does nothing on targets that enable the features by default, or that
don’t provide them at all. It must come after all dg-options directives. For
supported values of feature see Section 7.2.5 [Add Options|, page 108.

{ dg-additional-options options [{ target selector }] }

This directive provides a list of compiler options, to be used if the target system
matches selector, that are added to the default options used for this set of tests.

7.2.1.3 Modify the test timeout value

The normal timeout limit, in seconds, is found by searching the following in order:
e the value defined by an earlier dg-timeout directive in the test
e variable tool_timeout defined by the set of tests
e gcc,timeout set in the target board
e 300

{ dg-timeout n [{target selector }] }
Set the time limit for the compilation and for the execution of the test to the
specified number of seconds.

{ dg-timeout-factor x [{ target selector }] }
Multiply the normal time limit for compilation and execution of the test by the
specified floating-point factor.

7.2.1.4 Skip a test for some targets

{ dg-skip-if comment { selector } [{ include-opts } [{ exclude-opts }]1] }
Arguments include-opts and exclude-opts are lists in which each element is
a string of zero or more GCC options. Skip the test if all of the following
conditions are met:

e the test system is included in selector

o for at least one of the option strings in include-opts, every option from that
string is in the set of options with which the test would be compiled; use
‘"x"’ for an include-opts list that matches any options; that is the default
if include-opts is not specified

e for each of the option strings in exclude-opts, at least one option from that
string is not in the set of options with which the test would be compiled;
use ‘"" for an empty exclude-opts list; that is the default if exclude-opts
is not specified

For example, to skip a test if option -0s is present:



82 GNU Compiler Collection (GCC) Internals

/* { dg-skip-if "" { *-x-x } { "-0s" } { "" } } %/
To skip a test if both options -02 and -g are present:
/* { dg-skip-if "" { *-x-* } { "-02 -g" } { "" } } */
To skip a test if either -02 or -03 is present:
/* { dg-skip-if "" { *—+— } { "-02" "-03" } { " } } */
To skip a test unless option -0s is present:
/* { dg-skip-if "" { *—x-x } { "x" } { "-0s" } } */
To skip a test if either -02 or -03 is used with -g but not if -fpic is also
present:
/* { dg-skip-if "" { *-*-x } { "-02 -g" "-03 -g" } { "-fpic" } } */

{ dg-require-effective-target keyword [{ target selector }] }
Skip the test if the test target, including current multilib flags, is not covered by
the effective-target keyword. If the directive includes the optional ‘{ selector
}’ then the effective-target test is only performed if the target system matches
the selector. This directive must appear after any dg-do directive in the test
and before any dg-additional-sources directive. See Section 7.2.3 [Effective-
Target Keywords], page 86.

{ dg-require-support args }
Skip the test if the target does not provide the required support. These di-
rectives must appear after any dg-do directive in the test and before any dg-
additional-sources directive. They require at least one argument, which can
be an empty string if the specific procedure does not examine the argument. See
Section 7.2.6 [Require Support], page 110, for a complete list of these directives.

7.2.1.5 Expect a test to fail for some targets

{ dg-xfail-if comment { selector } [{ include-opts } [{ exclude-opts }]] }
Expect the test to fail if the conditions (which are the same as for dg-skip-if)
are met. This does not affect the execute step.

{ dg-xfail-run-if comment { selector } [{ include-opts } [{ exclude-opts }]] }
Expect the execute step of a test to fail if the conditions (which are the same
as for dg-skip-if) are met.

7.2.1.6 Expect the compiler to crash

{ dg-ice comment [{ selector } [{ include-opts } [{ exclude-opts }]1]1] }
Expect the compiler to crash with an internal compiler error and return a
nonzero exit status if the conditions (which are the same as for dg-skip-if)
are met. Used for tests that test bugs that have not been fixed yet.

7.2.1.7 Expect the test executable to fail

{ dg-shouldfail comment [{ selector } [{ include-opts } [{ exclude-opts }]1]1] }
Expect the test executable to return a nonzero exit status if the conditions
(which are the same as for dg-skip-if) are met.



Chapter 7: Testsuites 83

7.2.1.8 Verify compiler messages

Where line is an accepted argument for these commands, a value of ‘0’ can be used if there
is no line associated with the message.

{ dg-error regexp [comment [{ target/xfail selector } [line] 1] }
This DejaGnu directive appears on a source line that is expected to get an error
message, or else specifies the source line associated with the message. If there is
no message for that line or if the text of that message is not matched by regexp
then the check fails and comment is included in the FAIL message. The check
does not look for the string ‘error’ unless it is part of regexp.

{ dg-warning regexp [comment [{ target/xfail selector } [line] 1] }
This DejaGnu directive appears on a source line that is expected to get a
warning message, or else specifies the source line associated with the message.
If there is no message for that line or if the text of that message is not matched
by regexp then the check fails and comment is included in the FAIL message.
The check does not look for the string ‘warning’ unless it is part of regexp.

{ dg-message regexp [comment [{ target/xfail selector } [1line] 1] }
The line is expected to get a message other than an error or warning. If there is
no message for that line or if the text of that message is not matched by regexp
then the check fails and comment is included in the FAIL message.

{ dg-note regexp [comment [{ target/xfail selector } [1line] 1] }
The line is expected to get a ‘note’ message. If there is no message for that
line or if the text of that message is not matched by regexp then the check fails
and comment is included in the FAIL message.

By default, any excess ‘note’ messages are pruned, meaning their appearance
doesn’t trigger excess errors. However, if ‘dg-note’ is used at least once in a
testcase, they’re not pruned and instead must all be handled explicitly. Thus,
if looking for just single instances of messages with ‘note: ’ prefixes without
caring for all of them, use ‘dg-message "note: [...]" instead of ‘dg-note’,
or use ‘dg-note’ together with ‘dg-prune-output "note: "’.

{ dg-bogus regexp [comment [{ target/xfail selector } [line] 11 }
This DejaGnu directive appears on a source line that should not get a message
matching regexp, or else specifies the source line associated with the bogus
message. It is usually used with ‘xfail’ to indicate that the message is a
known problem for a particular set of targets.

{ dg-line linenumvar }
This DejaGnu directive sets the variable linenumvar to the line number of the
source line. The variable linenumvar can then be used in subsequent dg-error,
dg-warning, dg-message, dg-note and dg-bogus directives. For example:

int a; /* { dg-line first_def_a } */
float a; /* { dg-error "conflicting types of" } */
/* { dg-message "previous declaration of" "" { target *—*-* } first_def_a

{ dg-excess-errors comment [{ target/xfail selector }] }
This DejaGnu directive indicates that the test is expected to fail due to com-
piler messages that are not handled by ‘dg-error’, ‘dg-warning’, dg-message,

} +/1



84 GNU Compiler Collection (GCC) Internals

‘dg-note’ or ‘dg-bogus’. For this directive ‘xfail’ has the same effect as
‘target’.

{ dg-prune-output regexp }
Prune messages matching regexp from the test output.

7.2.1.9 Verify output of the test executable

{ dg-output regexp [{ target/xfail selector }] }
This DejaGnu directive compares regexp to the combined output that the test
executable writes to ‘stdout’ and ‘stderr’.

7.2.1.10 Specify environment variables for a test

{ dg-set-compiler-env-var var_name "var_value" }
Specify that the environment variable var_name needs to be set to var_value
before invoking the compiler on the test file.

{ dg-set-target-env-var var_name "var_value" }
Specify that the environment variable var_name needs to be set to var_value
before execution of the program created by the test.

7.2.1.11 Specify additional files for a test

{ dg-additional-files "filelist" }
Specify additional files, other than source files, that must be copied to the
system where the compiler runs.

{ dg-additional-sources "filelist" }
Specify additional source files to appear in the compile line following the main
test file.

7.2.1.12 Add checks at the end of a test

{ dg-final { local-directive } }
This DejaGnu directive is placed within a comment anywhere in the source file
and is processed after the test has been compiled and run. Multiple ‘dg-final’
commands are processed in the order in which they appear in the source file.
See Section 7.2.7 [Final Actions|, page 111, for a list of directives that can be
used within dg-final.

7.2.2 Selecting targets to which a test applies
Several test directives include selectors to limit the targets for which a test is run or to
declare that a test is expected to fail on particular targets.

A selector is:

e one or more target triplets, possibly including wildcard characters; use ‘*-*—*’ to match
any target

e a single effective-target keyword (see Section 7.2.3 [Effective-Target Keywords]
page 86)

)

e a list of compiler options that should be included or excluded (as described in more
detail below)



Chapter 7: Testsuites 85

a logical expression

Depending on the context, the selector specifies whether a test is skipped and reported
as unsupported or is expected to fail. A context that allows either ‘target’ or ‘xfail’
also allows ‘{ target selectorl xfail selector2 }’ to skip the test for targets that don’t
match selectorl and the test to fail for targets that match selector2.

A selector expression appears within curly braces and uses a single logical operator: one
of ‘1”7, ‘&&’, or ‘| |’. An operand is one of the following;:

another selector expression, in curly braces

an effective-target keyword, such as 1p64

a single target triplet

a list of target triplets within quotes or curly braces

one of the following:

‘{ any-opts optl ... optn }’
Each of optl to optn is a space-separated list of option globs. The selector
expression evaluates to true if, for one of these strings, every glob in the

string matches an option that was passed to the compiler. For example:
{ any-opts "-03 -flto" "-0[2g]l" }
is true if any of the following are true:
e ‘-02’ was passed to the compiler
e ‘—0g’ was passed to the compiler
e both ‘-03" and ‘-flto’ were passed to the compiler
This kind of selector can only be used within dg-final directives. Use
dg-skip-if, dg-xfail-if or dg-xfail-run-if to skip whole tests based
on options, or to mark them as expected to fail with certain options.
‘{ no-opts optl ... optn ¥
As for any-opts above, each of optl to optn is a space-separated list of
option globs. The selector expression evaluates to true if, for all of these
strings, there is at least one glob that does not match an option that was
passed to the compiler. It is shorthand for:
{ ! { any-opts optl ... optn } }
For example:
{ no-opts "-03 -flto" "-0[2g]" }

is true if all of the following are true:
e ‘-02’ was not passed to the compiler
e ‘—0g’ was not passed to the compiler
e at least one of ‘-03” or ‘-f1lto’ was not passed to the compiler

Like any-opts, this kind of selector can only be used within dg-final
directives.

Here are some examples of full target selectors:

{ target { ! "hppa*-*-* ia64x—*-*" } }

{ target { powerpcx-*-* && 1p64 } }

{ xfail { 1p64 || vect_no_align } }

{ xfail { aarch64*-*-x && { any-opts "-02" } } }



86 GNU Compiler Collection (GCC) Internals

7.2.3 Keywords describing target attributes

Effective-target keywords identify sets of targets that support particular functionality. They
are used to limit tests to be run only for particular targets, or to specify that particular
sets of targets are expected to fail some tests.

Effective-target keywords are defined in ‘lib/target-supports.exp’ in the GCC test-
suite, with the exception of those that are documented as being local to a particular test
directory.

The ‘effective target’ takes into account all of the compiler options with which the
test will be compiled, including the multilib options. By convention, keywords ending in
_nocache can also include options specified for the particular test in an earlier dg-options
or dg-add-options directive.

7.2.3.1 Endianness

be Target uses big-endian memory order for multi-byte and multi-word data.

le Target uses little-endian memory order for multi-byte and multi-word data.

7.2.3.2 Data type sizes

ilp32 Target has 32-bit int, long, and pointers.
1p64 Target has 32-bit int, 64-bit long and pointers.
11p64 Target has 32-bit int and long, 64-bit long long and pointers.
double64 Target has 64-bit double.
double64plus

Target has double that is 64 bits or longer.
longdoublel28

Target has 128-bit long double.
int32plus

Target has int that is at 32 bits or longer.
int16 Target has int that is 16 bits or shorter.
longlong64

Target has 64-bit long long.

long_neq_int
Target has int and long with different sizes.

short_eq_int
Target has short and int with the same size.

ptr_eq_short
Target has pointers (void *) and short with the same size.

int_eq_float
Target has int and float with the same size.

ptr_eq_long
Target has pointers (void *) and long with the same size.



Chapter 7: Testsuites 87

large_double
Target supports double that is longer than float.

large_long_double
Target supports long double that is longer than double.

ptr32plus
Target has pointers that are 32 bits or longer.

size20plus
Target has a 20-bit or larger address space, so supports at least 16-bit array
and structure sizes.

size24plus
Target has a 24-bit or larger address space, so supports at least 20-bit array
and structure sizes.

size32plus
Target has a 32-bit or larger address space, so supports at least 24-bit array
and structure sizes.

4byte_wchar_t
Target has wchar_t that is at least 4 bytes.

floatn Target has the _Floatn type.
floatnx  Target has the _Floatnx type.

floatn_runtime
Target has the _Floatn type, including runtime support for any options added
with dg-add-options.

floatnx_runtime
Target has the _Floatnx type, including runtime support for any options added
with dg-add-options.

floatn_nx_runtime
Target has runtime support for any options added with dg-add-options for
any _Floatn or _Floatnx type

inf Target supports floating point infinite (inf) for type double.
inff Target supports floating point infinite (inf) for type float.

7.2.3.3 Fortran-specific attributes

fortran_integer_16
Target supports Fortran integer that is 16 bytes or longer.

fortran_real_10
Target supports Fortran real that is 10 bytes or longer.

fortran_real_16
Target supports Fortran real that is 16 bytes or longer.

fortran_large_int
Target supports Fortran integer kinds larger than integer(8).



GNU Compiler Collection (GCC) Internals

fortran_large_real

Target supports Fortran real kinds larger than real(8).

7.2.3.4 Vector-specific attributes

vect_align_stack_vars

The target’s ABI allows stack variables to be aligned to the preferred vector
alignment.

vect_avg_qi

Target supports both signed and unsigned averaging operations on vectors of
bytes.

vect_mulhrs_hi

Target supports both signed and unsigned multiply-high-with-round-and-scale
operations on vectors of half-words.

vect_sdiv_pow2_si

Target supports signed division by constant power-of-2 operations on vectors
of 4-byte integers.

vect_condition

Target supports vector conditional operations.

vect_cond_mixed

Target supports vector conditional operations where comparison operands have
different type from the value operands.

vect_double

Target supports hardware vectors of double.

vect_double_cond_arith

Target supports conditional addition, subtraction, multiplication, division, min-
imum and maximum on vectors of double, via the cond_ optabs.

vect_element_align_preferred

The target’s preferred vector alignment is the same as the element alignment.

vect_float

Target supports hardware vectors of float when ‘~funsafe-math-optimizations’}]

is in effect.

vect_float_strict
Target supports hardware vectors of float when ‘~funsafe-math-optimizations’}]

is not in effect. This implies vect_float.

vect_int Target supports hardware vectors of int.

vect_long

Target supports hardware vectors of long.

vect_long_long

Target supports hardware vectors of long long.

vect_check_ptrs

Target supports the check_raw_ptrs and check_war_ptrs optabs on vectors.



Chapter 7: Testsuites 89

vect_fully_masked
Target supports fully-masked (also known as fully-predicated) loops, so that
vector loops can handle partial as well as full vectors.

vect_masked_load
Target supports vector masked loads.

vect_masked_store
Target supports vector masked stores.

vect_gather_load_ifn
Target supports vector gather loads using internal functions (rather than via
built-in functions or emulation).

vect_scatter_store
Target supports vector scatter stores.

vect_aligned_arrays
Target aligns arrays to vector alignment boundary.

vect_hw_misalign
Target supports a vector misalign access.

vect_no_align
Target does not support a vector alignment mechanism.

vect_peeling_profitable
Target might require to peel loops for alignment purposes.

vect_no_int_min_max
Target does not support a vector min and max instruction on int.

vect_no_int_add
Target does not support a vector add instruction on int.

vect_no_bitwise
Target does not support vector bitwise instructions.

vect_bool_cmp
Target supports comparison of bool vectors for at least one vector length.

vect_char_add
Target supports addition of char vectors for at least one vector length.

vect_char_mult
Target supports vector char multiplication.

vect_short_mult
Target supports vector short multiplication.

vect_int_mult
Target supports vector int multiplication.

vect_long_mult
Target supports 64 bit vector long multiplication.

vect_extract_even_odd
Target supports vector even/odd element extraction.



90 GNU Compiler Collection (GCC) Internals

vect_extract_even_odd_wide
Target supports vector even/odd element extraction of vectors with elements
SImode or larger.

vect_interleave
Target supports vector interleaving.

vect_strided
Target supports vector interleaving and extract even/odd.

vect_strided_wide
Target supports vector interleaving and extract even/odd for wide element

types.

vect_perm
Target supports vector permutation.

vect_perm_byte
Target supports permutation of vectors with 8-bit elements.

vect_perm_short
Target supports permutation of vectors with 16-bit elements.

vect_perm3_byte
Target supports permutation of vectors with 8-bit elements, and for the default
vector length it is possible to permute:

{ a0, al, a2, b0, b1, b2, ... }
to:

{ a0, a0, a0, b0, b0, b0, ... }

{ a1, a1, a1, b1, b1, b1, ... }

{ a2, a2, a2, b2, b2, b2, ... }

using only two-vector permutes, regardless of how long the sequence is.

vect_perm3_int
Like vect_perm3_byte, but for 32-bit elements.

vect_perm3_short
Like vect_perm3_byte, but for 16-bit elements.

vect_shift
Target supports a hardware vector shift operation.

vect_unaligned_possible
Target prefers vectors to have an alignment greater than element alignment,
but also allows unaligned vector accesses in some circumstances.

vect_variable_length
Target has variable-length vectors.

vect64 Target supports vectors of 64 bits.
vect32 Target supports vectors of 32 bits.

vect_widen_sum_hi_to_si
Target supports a vector widening summation of short operands into int re-
sults, or can promote (unpack) from short to int.



Chapter 7: Testsuites 91

vect_widen_sum_qi_to_hi
Target supports a vector widening summation of char operands into short
results, or can promote (unpack) from char to short.

vect_widen_sum_qi_to_si
Target supports a vector widening summation of char operands into int results.

vect_widen_mult_qi_to_hi
Target supports a vector widening multiplication of char operands into short
results, or can promote (unpack) from char to short and perform non-widening
multiplication of short.

vect_widen_mult_hi_to_si
Target supports a vector widening multiplication of short operands into int
results, or can promote (unpack) from short to int and perform non-widening
multiplication of int.

vect_widen_mult_si_to_di_pattern
Target supports a vector widening multiplication of int operands into long
results.

vect_sdot_qi
Target supports a vector dot-product of signed char.

vect_udot_qi
Target supports a vector dot-product of unsigned char.

vect_usdot_qi
Target supports a vector dot-product where one operand of the multiply is
signed char and the other of unsigned char.

vect_sdot_hi
Target supports a vector dot-product of signed short.

vect_udot_hi
Target supports a vector dot-product of unsigned short.

vect_pack_trunc
Target supports a vector demotion (packing) of short to char and from int to
short using modulo arithmetic.

vect_unpack
Target supports a vector promotion (unpacking) of char to short and from
char to int.

vect_intfloat_cvt
Target supports conversion from signed int to float.

vect_uintfloat_cvt
Target supports conversion from unsigned int to float.

vect_floatint_cvt
Target supports conversion from float to signed int.

vect_floatuint_cvt
Target supports conversion from float to unsigned int.



92 GNU Compiler Collection (GCC) Internals

vect_intdouble_cvt
Target supports conversion from signed int to double.

vect_doubleint_cvt
Target supports conversion from double to signed int.

vect_max_reduc
Target supports max reduction for vectors.

vect_sizes_16B_8B
Target supports 16- and 8-bytes vectors.

vect_sizes_32B_16B
Target supports 32- and 16-bytes vectors.

vect_logical_reduc
Target supports AND, IOR and XOR reduction on vectors.

vect_fold_extract_last
Target supports the fold_extract_last optab.

vect_len_load_store
Target supports the 1len_load and len_store optabs.

vect_partial_vectors_usage_1
Target supports loop vectorization with partial vectors and vect-partial-
vector-usage is set to 1.

vect_partial_vectors_usage_2
Target supports loop vectorization with partial vectors and vect-partial-
vector-usage is set to 2

vect_partial_vectors
Target supports loop vectorization with partial vectors and vect-partial-
vector-usage is nonzero.

vect_slp_v2qi_store_align
Target supports vectorization of 2-byte char stores with 2-byte aligned address
at plain ‘-02’.

vect_slp_v4qi_store_align
Target supports vectorization of 4-byte char stores with 4-byte aligned address
at plain ‘-02’.

vect_slp_v4qi_store_unalign
Target supports vectorization of 4-byte char stores with unaligned address at
plain ‘-02’.

struct_4char_block_move
Target supports block move for 8-byte aligned 4-byte size struct initialization.

vect_slp_v4qi_store_unalign_1
Target supports vectorization of 4-byte char stores with unaligned address or
store them with constant pool at plain ‘-02’.

struct_8char_block_move
Target supports block move for 8-byte aligned 8-byte size struct initialization.



Chapter 7: Testsuites 93

vect_slp_v8qi_store_unalign_1
Target supports vectorization of 8-byte char stores with unaligned address or
store them with constant pool at plain ‘-02’.

struct_16char_block_move
Target supports block move for 8-byte aligned 16-byte size struct initialization.

vect_slp_vl6qi_store_unalign_1
Target supports vectorization of 16-byte char stores with unaligned address or
store them with constant pool at plain ‘-02’.

vect_slp_v2hi_store_align
Target supports vectorization of 4-byte short stores with 4-byte aligned addres-
sat plain ‘-02’.

vect_slp_v2hi_store_unalign
Target supports vectorization of 4-byte short stores with unaligned address at
plain ‘-02’.

vect_slp_v4hi_store_unalign
Target supports vectorization of 8-byte short stores with unaligned address at
plain ‘-02’.

vect_slp_v2si_store_align
Target supports vectorization of 8-byte int stores with 8-byte aligned address
at plain ‘-02’.

vect_slp_vé4si_store_unalign
Target supports vectorization of 16-byte int stores with unaligned address at
plain ‘-02’.

7.2.3.5 Thread Local Storage attributes

tls Target supports thread-local storage.

tls_native
Target supports native (rather than emulated) thread-local storage.

tls_runtime

Test system supports executing TLS executables.

7.2.3.6 Decimal floating point attributes

dfp Targets supports compiling decimal floating point extension to C.

dfp_nocache
Including the options used to compile this particular test, the target supports
compiling decimal floating point extension to C.

dfprt Test system can execute decimal floating point tests.

dfprt_nocache
Including the options used to compile this particular test, the test system can
execute decimal floating point tests.

hard_dfp Target generates decimal floating point instructions with current options.



94 GNU Compiler Collection (GCC) Internals

7.2.3.7 ARM-specific attributes
arm32 ARM target generates 32-bit code.

arm_little_endian
ARM target that generates little-endian code.

arm_eabi ARM target adheres to the ABI for the ARM Architecture.

arm_fp_ok
ARM target defines __ARM_FP using -mfloat-abi=softfp or equivalent op-
tions. Some multilibs may be incompatible with these options.

arm_fp_dp_ok

ARM target defines __ARM_FP with double-precision support using -mfloat-
abi=softfp or equivalent options. Some multilibs may be incompatible with
these options.

arm_hf_eabi
ARM target adheres to the VFP and Advanced SIMD Register Arguments vari-
ant of the ABI for the ARM Architecture (as selected with -mfloat-abi=hard).

arm_softfloat
ARM target uses emulated floating point operations.

arm_hard_vfp_ok
ARM target supports -mfpu=vfp -mfloat-abi=hard. Some multilibs may be
incompatible with these options.

arm_iwmmxt_ok
ARM target supports -mcpu=iwmmxt. Some multilibs may be incompatible with
this option.

arm_neon ARM target supports generating NEON instructions.

arm_tune_string_ops_prefer_neon
Test CPU tune supports inlining string operations with NEON instructions.

arm_neon_hw
Test system supports executing NEON instructions.

arm_neonv2_hw
Test system supports executing NEON v2 instructions.

arm_neon_ok
ARM Target supports -mfpu=neon -mfloat-abi=softfp or compatible op-
tions. Some multilibs may be incompatible with these options.

arm_neon_ok_no_float_abi
ARM Target supports NEON with -mfpu=neon, but without any -mfloat-abi=
option. Some multilibs may be incompatible with this option.

arm_neonv2_ok
ARM Target supports -mfpu=neon-vfpv4 -mfloat-abi=softfp or compatible
options. Some multilibs may be incompatible with these options.



Chapter 7: Testsuites 95

arm_fpl6_ok
Target supports options to generate VFP half-precision floating-point instruc-
tions. Some multilibs may be incompatible with these options. This test is
valid for ARM only.

arm_fpl6_hw
Target supports executing VFP half-precision floating-point instructions. This
test is valid for ARM only.

arm_neon_£fpl6_ok
ARM Target supports —-mfpu=neon-fp16 -mfloat-abi=softfp or compatible
options, including -mfp16-format=ieee if necessary to obtain the __£fp16 type.
Some multilibs may be incompatible with these options.

arm_neon_£fpl6_hw
Test system supports executing Neon half-precision float instructions. (Implies
previous.)

arm_fpl6_alternative_ok
ARM target supports the ARM FP16 alternative format. Some multilibs may
be incompatible with the options needed.

arm_fpl6_none_ok
ARM target supports specifying none as the ARM FP16 format.

arm_thumbl_ok
ARM target generates Thumb-1 code for -mthumb.

arm_thumb2_ok
ARM target generates Thumb-2 code for -mthumb.

arm_nothumb
ARM target that is not using Thumb.

arm_vfp_ok
ARM target supports -mfpu=vfp -mfloat-abi=softfp. Some multilibs may
be incompatible with these options.

arm_vip3_ok
ARM target supports -mfpu=vfp3 -mfloat-abi=softfp. Some multilibs may
be incompatible with these options.

arm_arch_v8a_hard_ok
The compiler is targeting arm*x—*-* and can compile and assemble code using
the options -march=armv8-a -mfpu=neon-fp-armv8 -mfloat-abi=hard. This
is not enough to guarantee that linking works.

arm_arch_v8a_hard_multilib
The compiler is targeting arm*-*-* and can build programs using the options
-march=armv8-a -mfpu=neon-fp-armv8 -mfloat-abi=hard. The target can
also run the resulting binaries.

arm_v8_vfp_ok
ARM target supports -mfpu=fp-armv8 -mfloat-abi=softfp. Some multilibs
may be incompatible with these options.



96

GNU Compiler Collection (GCC) Internals

arm_v8_neon_ok

ARM target supports -mfpu=neon-fp-armv8 -mfloat-abi=softfp. Some
multilibs may be incompatible with these options.

arm_v8_1la_neon_ok

ARM target supports options to generate ARMv8.1-A Adv.SIMD instructions.
Some multilibs may be incompatible with these options.

arm_v8_la_neon_hw

ARM target supports executing ARMv8.1-A  Adv.SIMD instructions.
Some multilibs may be incompatible with the options needed. Implies
arm_v8_la_neon_ok.

arm_acq_rel

ARM target supports acquire-release instructions.

arm_v8_2a_fpl6_scalar_ok

ARM target supports options to generate instructions for ARMv8.2-A and
scalar instructions from the FP16 extension. Some multilibs may be incom-
patible with these options.

arm_v8_2a_fpl6_scalar_hw

ARM target supports executing instructions for ARMv8.2-A and scalar instruc-
tions from the FP16 extension. Some multilibs may be incompatible with these
options. Implies arm_v8_2a_fp16_neon_ok.

arm_v8_2a_fpl6_neon_ok

ARM target supports options to generate instructions from ARMv8.2-A with
the FP16 extension. Some multilibs may be incompatible with these options.
Implies arm_v8_2a_fpl6_scalar_ok.

arm_v8_2a_fpl6_neon_hw

ARM target supports executing instructions from ARMv8.2-A with the FP16
extension. Some multilibs may be incompatible with these options. Implies
arm_v8_2a_fpl6_neon_ok and arm_v8_2a_fpl16_scalar_hw.

arm_v8_2a_dotprod_neon_ok

ARM target supports options to generate instructions from ARMv8.2-A with
the Dot Product extension. Some multilibs may be incompatible with these
options.

arm_v8_2a_dotprod_neon_hw

ARM target supports executing instructions from ARMv8.2-A with the Dot
Product extension. Some multilibs may be incompatible with these options.
Implies arm_v8_2a_dotprod_neon_ok.

arm_v8_2a_i8mm_neon_hw

ARM target supports executing instructions from ARMv8.2-A with the 8-bit
Matrix Multiply extension. Some multilibs may be incompatible with these
options. Implies arm_v8_2a_i8mm_ok.



Chapter 7: Testsuites 97

arm_fpl6fml_neon_ok
ARM target supports extensions to generate the VFMAL and VFMLS half-precision
floating-point instructions available from ARMv8.2-A and onwards. Some mul-
tilibs may be incompatible with these options.

arm_v8_2a_bf16_neon_ok
ARM target supports options to generate instructions from ARMv8.2-A with
the BFloat16 extension (bf16). Some multilibs may be incompatible with these
options.

arm_v8_2a_i8mm_ok
ARM target supports options to generate instructions from ARMv8.2-A with
the 8-Bit Integer Matrix Multiply extension (i8mm). Some multilibs may be
incompatible with these options.

arm_v8_1m_mve_ok
ARM target supports options to generate instructions from ARMvS&8.1-M with
the M-Profile Vector Extension (MVE). Some multilibs may be incompatible
with these options.

arm_v8_1m_mve_fp_ok
ARM target supports options to generate instructions from ARMv8.1-M with
the Half-precision floating-point instructions (HP), Floating-point Extension
(FP) along with M-Profile Vector Extension (MVE). Some multilibs may be
incompatible with these options.

arm_mve_hw
Test system supports executing MVE instructions.

arm_v8m_main_cde
ARM target supports options to generate instructions from ARMv8-M with the
Custom Datapath Extension (CDE). Some multilibs may be incompatible with
these options.

arm_v8m_main_cde_£fp
ARM target supports options to generate instructions from ARMv8-M with the
Custom Datapath Extension (CDE) and floating-point (VFP). Some multilibs
may be incompatible with these options.

arm_v8_1m_main_cde_mve
ARM target supports options to generate instructions from ARMv8.1-M with
the Custom Datapath Extension (CDE) and M-Profile Vector Extension
(MVE). Some multilibs may be incompatible with these options.

arm_prefer_ldrd_strd
ARM target prefers LDRD and STRD instructions over LDM and STM instructions.

arm_thumbl_movt_ok
ARM target generates Thumb-1 code for -mthumb with MOVW and MOVT instruc-
tions available.

arm_thumbl_cbz_ok
ARM target generates Thumb-1 code for -mthumb with CBZ and CBNZ instruc-
tions available.



98 GNU Compiler Collection (GCC) Internals

arm_divmod_simode
ARM target for which divmod transform is disabled, if it supports hardware
div instruction.

arm_cmse_ok
ARM target supports ARMv8-M Security Extensions, enabled by the -mcmse
option.

arm_cmse_hw
Test system supports executing CMSE instructions.

arm_coprocl_ok
ARM target supports the following coprocessor instructions: CDP, LDC, STC,
MCR and MRC.

arm_coproc2_ok
ARM target supports all the coprocessor instructions also listed as supported
in [arm_coprocl_ok|, page 98 in addition to the following: CDP2, LDC2, LDC21,
STC2, STC21, MCR2 and MRC2.

arm_coproc3_ok
ARM target supports all the coprocessor instructions also listed as supported
in [arm_coproc2_ok], page 98 in addition the following: MCRR and MRRC.

arm_coproc4_ok
ARM target supports all the coprocessor instructions also listed as supported
in [arm_coproc3_ok], page 98 in addition the following: MCRR2 and MRRC2.

arm_simd32_ok
ARM Target supports options suitable for accessing the SIMD32 intrinsics from
arm_acle.h. Some multilibs may be incompatible with these options.

arm_sat_ok
ARM Target supports options suitable for accessing the saturation intrinsics
from arm_acle.h. Some multilibs may be incompatible with these options.

arm_dsp_ok
ARM Target supports options suitable for accessing the DSP intrinsics from
arm_acle.h. Some multilibs may be incompatible with these options.

arm_softfp_ok
ARM target supports the -mfloat-abi=softfp option.

arm_hard_ok
ARM target supports the -mfloat-abi=hard option.

arm_mve  ARM target supports generating MVE instructions.

arm_v8_1_lob_ok
ARM Target supports executing the Armv8.1-M Mainline Low Overhead Loop
instructions DLS and LE. Some multilibs may be incompatible with these op-
tions.



Chapter 7: Testsuites 99

arm_thumb2_no_arm_v8_1_lob
ARM target where Thumb-2 is used without options but does not support
executing the Armv8.1-M Mainline Low Overhead Loop instructions DLS and
LE.

arm_thumb2_ok_no_arm_v8_1_lob
ARM target generates Thumb-2 code for -mthumb but does not support exe-
cuting the Armv8.1-M Mainline Low Overhead Loop instructions DLS and LE.

7.2.3.8 AArch64-specific attributes

aarch64_asm_<ext>_ok
AArch64 assembler supports the architecture extension ext via the .arch_
extension pseudo-op.

aarch64_tiny
AArch64 target which generates instruction sequences for tiny memory model.

aarch64_small
AArch64 target which generates instruction sequences for small memory model.

aarch64_large
A Arch64 target which generates instruction sequences for large memory model.

aarch64_little_endian
AArch64 target which generates instruction sequences for little endian.

aarch64_big_endian
AArch64 target which generates instruction sequences for big endian.

aarch64_small_fpic
Binutils installed on test system supports relocation types required by -fpic for
AArch64 small memory model.

aarch64_sve_hw
AArch64 target that is able to generate and execute SVE code (regardless of
whether it does so by default).

aarch64_svel28_hw
aarch64_sve256_hw
aarch64_sveb512_hw
aarch64_svel024_hw
aarch64_sve2048_hw
Like aarch64_sve_hw, but also test for an exact hardware vector length.

aarch64_fjcvtzs_hw
AArch64 target that is able to generate and execute armv8.3-a FJCVTZS in-
struction.

7.2.3.9 MIPS-specific attributes
mips64 MIPS target supports 64-bit instructions.
nomips16 MIPS target does not produce MIPS16 code.



100 GNU Compiler Collection (GCC) Internals

mipsl6_attribute
MIPS target can generate MIPS16 code.

mips_loongson
MIPS target is a Loongson-2E or -2F target using an ABI that supports the
Loongson vector modes.

mips_msa MIPS target supports -mmsa, MIPS SIMD Architecture (MSA).

mips_newabi_large_long_double
MIPS target supports long double larger than double when using the new
ABL

mpaired_single

MIPS target supports -mpaired-single.

7.2.3.10 MSP430-specific attributes

msp430_small
MSP430 target has the small memory model enabled (-msmall).

msp430_large
MSP430 target has the large memory model enabled (-mlarge).

7.2.3.11 PowerPC-specific attributes

dfp_hw PowerPC target supports executing hardware DFP instructions.

p8vector_hw
PowerPC target supports executing VSX instructions (ISA 2.07).

powerpc64
Test system supports executing 64-bit instructions.

powerpc_altivec
PowerPC target supports AltiVec.

powerpc_altivec_ok
PowerPC target supports -maltivec.

powerpc_eabi_ok
PowerPC target supports -meabi.

powerpc_elfv2
PowerPC target supports -mabi=elfv2.

powerpc_£fprs
PowerPC target supports floating-point registers.

powerpc_hard_double
PowerPC target supports hardware double-precision floating-point.

powerpc_htm_ok
PowerPC target supports -mhtm

powerpc_p8vector_ok
PowerPC target supports -mpower8-vector



Chapter 7: Testsuites 101

powerpc_popcntb_ok
PowerPC target supports the popcntb instruction, indicating that this target
supports -mcpu=power5.

powerpc_ppu_ok
PowerPC target supports -mcpu=cell.

powerpc_spe
PowerPC target supports PowerPC SPE.

powerpc_spe_nocache
Including the options used to compile this particular test, the PowerPC target
supports PowerPC SPE.

powerpc_spu
PowerPC target supports PowerPC SPU.

powerpc_vsx_ok
PowerPC target supports -mvsx.

powerpc_405_nocache
Including the options used to compile this particular test, the PowerPC target
supports PowerPC 405.

ppc_recip_hw
PowerPC target supports executing reciprocal estimate instructions.

vmx_hw PowerPC target supports executing AltiVec instructions.
vsx_hw PowerPC target supports executing VSX instructions (ISA 2.06).

has_arch_pwrb
PowerPC target pre-defines macro _ ARCH_PWRS5 which means the -mcpu set-
ting is Powerb or later.

has_arch_pwr6
PowerPC target pre-defines macro _ ARCH_PWR6 which means the -mcpu set-
ting is Power6 or later.

has_arch_pwr7
PowerPC target pre-defines macro _ARCH_PWR7 which means the -mcpu set-
ting is Power7 or later.

has_arch_pwr8
PowerPC target pre-defines macro _.ARCH_PWRS8 which means the -mcpu set-
ting is Power8 or later.

has_arch_pwr9
PowerPC target pre-defines macro _.ARCH_PWRY9 which means the -mcpu set-
ting is Power9 or later.

7.2.4 RISC-V specific attributes

rv32 Test system has an integer register width of 32 bits.
rv64 Test system has an integer register width of 64 bits.



102 GNU Compiler Collection (GCC) Internals

7.2.4.1 Other hardware attributes

autoincdec
Target supports autoincrement/decrement addressing.

avx Target supports compiling avx instructions.

avx_runtime
Target supports the execution of avx instructions.

avx2 Target supports compiling avx2 instructions.

avx2_runtime
Target supports the execution of avx2 instructions.

avxvnni Target supports the execution of avxvnni instructions.
avx512f  Target supports compiling avx512f instructions.

avxb512f_runtime
Target supports the execution of avx512f instructions.

avxbl2vp2intersect
Target supports the execution of avx512vp2intersect instructions.

amx_tile Target supports the execution of amx-tile instructions.
amx_int8 Target supports the execution of amx-int8 instructions.
amx_bf16 Target supports the execution of amx-bf16 instructions.
cell_hw  Test system can execute AltiVec and Cell PPU instructions.

coldfire_fpu
Target uses a ColdFire FPU.

divmod Target supporting hardware divmod insn or divmod libcall.

divmod_simode
Target supporting hardware divmod insn or divmod libcall for SImode.

hard_float
Target supports FPU instructions.

non_strict_align
Target does not require strict alignment.

pie_copyreloc
The x86-64 target linker supports PIE with copy reloc.

rdrand Target supports x86 rdrand instruction.

sqrt_insn
Target has a square root instruction that the compiler can generate.

sse Target supports compiling sse instructions.

sse_runtime
Target supports the execution of sse instructions.



Chapter 7: Testsuites 103

sse2 Target supports compiling sse2 instructions.

sse2_runtime
Target supports the execution of sse2 instructions.

sync_char_short
Target supports atomic operations on char and short.

sync_int_long
Target supports atomic operations on int and long.

ultrasparc_hw
Test environment appears to run executables on a simulator that accepts only
EM_SPARC executables and chokes on EM_SPARC32PLUS or EM_SPARCV9 executa-
bles.

vect_cmdline_needed
Target requires a command line argument to enable a SIMD instruction set.

xorsign  Target supports the xorsign optab expansion.

7.2.4.2 Environment attributes

c The language for the compiler under test is C.
ct++ The language for the compiler under test is C++.

c99_runtime
Target provides a full C99 runtime.

correct_iso_cpp_string_wchar_protos
Target string.h and wchar.h headers provide C++ required overloads for
strchr etc. functions.

d_runtime
Target provides the D runtime.

d_runtime_has_std_library
Target provides the D standard library (Phobos).

dummy_wcsftime
Target uses a dummy wcsftime function that always returns zero.

fd_truncate
Target can truncate a file from a file descriptor, as wused by
‘libgfortran/io/unix.c:fd_truncate’; i.e. ftruncate or chsize.

fenv Target provides ‘fenv.h’ include file.

fenv_exceptions
Target supports ‘fenv.h’ with all the standard IEEE exceptions and floating-
point exceptions are raised by arithmetic operations.

fenv_exceptions_dfp
Target supports ‘fenv.h’ with all the standard IEEE exceptions and floating-
point exceptions are raised by arithmetic operations for decimal floating point.



104 GNU Compiler Collection (GCC) Internals

fileio Target offers such file I/O library functions as fopen, fclose, tmpnam, and
remove. This is a link-time requirement for the presence of the functions in
the library; even if they fail at runtime, the requirement is still regarded as
satisfied.

freestanding
Target is ‘freestanding’ as defined in section 4 of the C99 standard. Effec-
tively, it is a target which supports no extra headers or libraries other than
what is considered essential.

gettimeofday

Target supports gettimeofday.
init_priority

Target supports constructors with initialization priority arguments.
inttypes_types

Target has the basic signed and unsigned types in inttypes.h. This is for

tests that GCC’s notions of these types agree with those in the header, as some
systems have only inttypes.h.

lax_strtofp
Target might have errors of a few ULP in string to floating-point conversion
functions and overflow is not always detected correctly by those functions.

mempcpy  Target provides mempcpy function.
mmap Target supports mmap.
newlib Target supports Newlib.

newlib_nano_io
GCC was configured with --enable-newlib-nano-formatted-io, which re-
duces the code size of Newlib formatted I/O functions.

powl0 Target provides pow10 function.
pthread  Target can compile using pthread.h with no errors or warnings.

pthread_h
Target has pthread.h.

run_expensive_tests
Expensive testcases (usually those that consume excessive amounts of CPU
time) should be run on this target. This can be enabled by setting the GCC_
TEST_RUN_EXPENSIVE environment variable to a non-empty string.

simulator
Test system runs executables on a simulator (i.e. slowly) rather than hardware
(i.e. fast).

signal Target has signal.h.
stabs Target supports the stabs debugging format.

stdint_types
Target has the basic signed and unsigned C types in stdint.h. This will be
obsolete when GCC ensures a working stdint.h for all targets.



Chapter 7: Testsuites 105

stdint_types_mbig_endian
Target accepts the option ‘-mbig-endian’ and stdint.h can be included with-
out error when ‘-mbig-endian’ is passed.

stpcpy Target provides stpcpy function.
sysconf Target supports sysconf.

trampolines
Target supports trampolines.

uclibc Target supports uClibc.

unwrapped
Target does not use a status wrapper.

vxworks_kernel
Target is a VxWorks kernel.

vxworks_rtp
Target is a VxWorks RTP.

wchar Target supports wide characters.

7.2.4.3 Other attributes

R_flag_in_section
Target supports the 'R’ flag in .section directive in assembly inputs.

automatic_stack_alignment
Target supports automatic stack alignment.

branch_cost
Target supports ‘~branch-cost=N’.

cxa_atexit
Target uses __cxa_atexit.

default_packed
Target has packed layout of structure members by default.

exceptions
Target supports exceptions.

exceptions_enabled
Target supports exceptions and they are enabled in the current testing config-
uration.

fgraphite
Target supports Graphite optimizations.

fixed_point
Target supports fixed-point extension to C.

fopenacc Target supports OpenACC via ‘~fopenacc’.
fopenmp  Target supports OpenMP via ‘~fopenmp’.



106 GNU Compiler Collection (GCC) Internals

fpic Target supports ‘~fpic’ and ‘-fPIC’.
freorder Target supports ‘~-freorder-blocks-and-partition’.

fstack_protector
Target supports ‘~fstack-protector’.

gas Target uses GNU as.

gc_sections
Target supports ‘--gc-sections’.

gld Target uses GNU 1d.

keeps_null_pointer_checks
Target keeps null pointer checks, either due to the wuse of
‘~fno-delete-null-pointer-checks’ or hardwired into the target.

1lvm_binutils
Target is using an LLVM assembler and/or linker, instead of GNU Binutils.

lra Target supports local register allocator (LRA).
lto Compiler has been configured to support link-time optimization (LTO).

lto_incremental
Compiler and linker support link-time optimization relocatable linking with ‘-r’
and ‘-flto’ options.

naked_functions
Target supports the naked function attribute.

named_sections
Target supports named sections.

natural_alignment_32
Target uses natural alignment (aligned to type size) for types of 32 bits or less.

target_natural_alignment_64
Target uses natural alignment (aligned to type size) for types of 64 bits or less.

noinit Target supports the noinit variable attribute.
nonpic Target does not generate PIC by default.

o_flag in_section
Target supports the 'o’ flag in .section directive in assembly inputs.

offload_gcn
Target has been configured for OpenACC/OpenMP offloading on AMD GCN.

persistent
Target supports the persistent variable attribute.

pie_enabled
Target generates PIE by default.

pcc_bitfield_type_matters
Target defines PCC_BITFIELD_TYPE_MATTERS



Chapter 7: Testsuites 107

pe_aligned_commons
Target supports ‘-mpe-aligned-commons’.

pie Target supports ‘-pie’, ‘-fpie’ and ‘~fPIE’.
rdynamic Target supports ‘~rdynamic’.
scalar_all_fma

Target supports all four fused multiply-add optabs for both float and double.
These optabs are: fma_optab, fms_optab, fnma_optab and fnms_optab.

section_anchors
Target supports section anchors.

short_enums
Target defaults to short enums.

stack_size
Target has limited stack size. The stack size limit can be obtained using
the STACK_SIZE macro defined by [dg-add-options feature stack_size],
page 110.

static Target supports ‘-static’.

static_libgfortran
Target supports statically linking ‘libgfortran’.

string _merging
Target supports merging string constants at link time.

ucn Target supports compiling and assembling UCN.

ucn_nocache
Including the options used to compile this particular test, the target supports
compiling and assembling UCN.

unaligned_stack
Target does not guarantee that its STACK_BOUNDARY is greater than or equal to
the required vector alignment.

vector_alignment_reachable
Vector alignment is reachable for types of 32 bits or less.

vector_alignment_reachable_for_64bit
Vector alignment is reachable for types of 64 bits or less.

wchar_t_charl6_t_compatible
Target supports wchar_t that is compatible with char16_t.

wchar_t_char32_t_compatible
Target supports wchar_t that is compatible with char32_t.

comdat_group
Target uses comdat groups.

indirect_calls
Target supports indirect calls, i.e. calls where the target is not constant.



108 GNU Compiler Collection (GCC) Internals

lgccjit  Target supports -lgecjit, i.e. libgecjit.so can be linked into jit tests.

__0OPTIMIZE__
Optimizations are enabled (__OPTIMIZE__) per the current compiler flags.

7.2.4.4 Local to tests in gcc.target/i386

3dnow Target supports compiling 3dnow instructions.
aes Target supports compiling aes instructions.
fmad Target supports compiling fma4 instructions.

mfentry  Target supports the -mfentry option that alters the position of profiling calls
such that they precede the prologue.

ms_hook_prologue
Target supports attribute ms_hook_prologue.

pclmul Target supports compiling pclmul instructions.
sse3 Target supports compiling sse3 instructions.
sse4d Target supports compiling sse4 instructions.
sseda Target supports compiling sse4a instructions.
ssse3 Target supports compiling ssse3 instructions.
vaes Target supports compiling vaes instructions.

vpclmul  Target supports compiling vpclmul instructions.

xop Target supports compiling xop instructions.

7.2.4.5 Local to tests in gcc.test-framework

no Always returns 0.

yes Always returns 1.

7.2.5 Features for dg-add-options
The supported values of feature for directive dg-add-options are:

arm_fp __ARM_FP definition. Only ARM targets support this feature, and only then in
certain modes; see the [arm_fp_ok effective target keyword|, page 94.

arm_fp_dp
__ARM_FP definition with double-precision support. Only ARM targets support
this feature, and only then in certain modes; see the [arm_fp_dp_ok effective
target keyword], page 94.

arm_neon NEON support. Only ARM targets support this feature, and only then in
certain modes; see the [arm_neon_ok effective target keyword], page 94.

arm_fp16 VFP half-precision floating point support. This does not select the FP16 for-
mat; for that, use [arm_fp16_ieee], page 109 or [arm_fp16_alternative], page 109
instead. This feature is only supported by ARM targets and then only in certain
modes; see the [arm_fp16_ok effective target keyword], page 95.



Chapter 7: Testsuites 109

arm_fpl6_ieee
ARM IEEE 754-2008 format VFP half-precision floating point support. This
feature is only supported by ARM targets and then only in certain modes; see
the [arm_fp16_ok effective target keyword], page 95.

arm_fpl6_alternative
ARM Alternative format VFP half-precision floating point support. This fea-
ture is only supported by ARM targets and then only in certain modes; see the
[arm_fpl6_ok effective target keyword], page 95.

arm_neon_£fpl6
NEON and half-precision floating point support. Only ARM targets support
this feature, and only then in certain modes; see the [arm_neon_fp16_ok effective
target keyword], page 95.

arm_vfp3 arm vip3 floating point support; see the [arm_vip3_ok effective target keyword],
page 95.

arm_arch_v8a_hard
Add options for ARMv8-A and the hard-float variant of the AAPCS, if this is
supported by the compiler; see the [arm_arch_v8a_hard_ok|, page 95 effective
target keyword.

arm_v8_la_neon
Add options for ARMv8.1-A with Adv.SIMD support, if this is supported by
the target; see the [arm_v8_la_neon_ok], page 96 effective target keyword.

arm_v8_2a_fpl6_scalar
Add options for ARMv8.2-A with scalar FP16 support, if this is supported by
the target; see the [arm_v8_2a_fp16_scalar_ok|, page 96 effective target keyword.

arm_v8_2a_fpl6_neon
Add options for ARMv8.2-A with Adv.SIMD FP16 support, if this is supported
by the target; see the [arm_v8_2a_fpl6_neon_ok|, page 96 effective target key-
word.

arm_v8_2a_dotprod_neon
Add options for ARMv8.2-A with Adv.SIMD Dot Product support, if this is
supported by the target; see the [arm_v8_2a_dotprod_neon_ok], page 96 effective
target keyword.

arm_fpl6fml_neon
Add options to enable generation of the VFMAL and VFMSL instructions, if this
is supported by the target; see the [arm_fpl6fml_neon_ok]|, page 97 effective
target keyword.

arm_dsp  Add options for ARM DSP intrinsics support, if this is supported by the target;
see the [arm_dsp_ok effective target keyword], page 98.

bind_pic_locally
Add the target-specific flags needed to enable functions to bind locally when
using pic/PIC passes in the testsuite.

floatn Add the target-specific flags needed to use the _Floatn type.



110 GNU Compiler Collection (GCC) Internals

floatnx  Add the target-specific flags needed to use the _Floatnx type.
ieee Add the target-specific flags needed to enable full IEEE compliance mode.

mipsl6_attribute
mips16 function attributes. Only MIPS targets support this feature, and only
then in certain modes.

stack_size
Add the flags needed to define macro STACK_SIZE and set it to the stack size
limit associated with the [stack_size effective target], page 107.

sqrt_insn
Add the target-specific flags needed to enable hardware square root instructions,
if any.

tls Add the target-specific flags needed to use thread-local storage.

7.2.6 Variants of dg-require-support

A few of the dg-require directives take arguments.

dg-require-iconv codeset
Skip the test if the target does not support iconv. codeset is the codeset to
convert to.

dg-require-profiling profopt
Skip the test if the target does not support profiling with option profopt.

dg-require-stack-check check
Skip the test if the target does not support the -fstack-check option. If check
is "", support for -fstack-check is checked, for -fstack-check=("check")
otherwise.

dg-require-stack-size size
Skip the test if the target does not support a stack size of size.

dg-require-visibility vis
Skip the test if the target does not support the visibility attribute. If vis
is "" support for visibility("hidden") is checked, for visibility("vis")
otherwise.

The original dg-require directives were defined before there was support for effective-
target keywords. The directives that do not take arguments could be replaced with effective-
target keywords.

dg-require-alias ""

Skip the test if the target does not support the ‘alias’ attribute.
dg-require-ascii-locale ""

Skip the test if the host does not support an ASCII locale.
dg-require-compat-dfp ""

Skip this test unless both compilers in a ‘compat’ testsuite support decimal

floating point.



Chapter 7: Testsuites 111

dg-require-cxa-atexit ""
Skip the test if the target does not support __cxa_atexit. This is equivalent
to dg-require-effective-target cxa_atexit.

dg-require-dll ""
Skip the test if the target does not support DLL attributes.

dg-require-dot ""
Skip the test if the host does not have dot.

dg-require-fork ""
Skip the test if the target does not support fork.

dg-require-gc-sections ""

Skip the test if the target’s linker does not support the ——gc-sections flags.
This is equivalent to dg-require-effective-target gc-sections.

dg-require-host-local ""
Skip the test if the host is remote, rather than the same as the build system.
Some tests are incompatible with DejaGnu’s handling of remote hosts, which
involves copying the source file to the host and compiling it with a relative path
and "-o a.out".

dg-require-mkfifo ""
Skip the test if the target does not support mkfifo.

dg-require-named-sections ""
Skip the test is the target does not support named sections. This is equivalent
to dg-require-effective-target named_sections.

dg-require-weak ""
Skip the test if the target does not support weak symbols.

dg-require-weak-override ""

Skip the test if the target does not support overriding weak symbols.
7.2.7 Commands for use in dg-final
The GCC testsuite defines the following directives to be used within dg-final.

7.2.7.1 Scan a particular file

scan-file filename regexp [{ target/xfail selector }]
Passes if regexp matches text in filename.

scan-file-not filename regexp [{ target/xfail selector }]
Passes if regexp does not match text in filename.

scan-module module regexp [{ target/xfail selector }]
Passes if regexp matches in Fortran module module.

dg-check-dot filename
Passes if filename is a valid ‘. dot’ file (by running dot -Tpng on it, and verifying
the exit code is 0).



112 GNU Compiler Collection (GCC) Internals

7.2.7.2 Scan the assembly output

scan-assembler regex [{ target/xfail selector }]
Passes if regex matches text in the test’s assembler output.

scan-assembler-not regex [{ target/xfail selector }]
Passes if regex does not match text in the test’s assembler output.

scan-assembler-times regex num [{ target/xfail selector }]
Passes if regex is matched exactly num times in the test’s assembler output.

scan-assembler-dem regex [{ target/xfail selector }]
Passes if regex matches text in the test’s demangled assembler output.

scan-assembler-dem-not regex [{ target/xfail selector }]
Passes if regex does not match text in the test’s demangled assembler output.

scan-assembler-symbol-section functions section [{ target/xfail selector }]
Passes if functions are all in section. The caller needs to allow for USER_LABEL_
PREFIX and different section name conventions.

scan-symbol-section filename functions section [{ target/xfail selector }]
Passes if functions are all in sectionin filename. The same caveats as for scan-
assembler-symbol-section apply.

scan-hidden symbol [{ target/xfail selector }]
Passes if symbol is defined as a hidden symbol in the test’s assembly output.

scan-not-hidden symbol [{ target/xfail selector }]
Passes if symbol is not defined as a hidden symbol in the test’s assembly output.

check-function-bodies prefix terminator [options [{ target/xfail selector }]]

Looks through the source file for comments that give the expected assembly
output for selected functions. Each line of expected output starts with the
prefix string prefix and the expected output for a function as a whole is followed
by a line that starts with the string terminator. Specifying an empty terminator
is equivalent to specifying ‘"*/"’.

options, if specified, is a list of regular expressions, each of which matches a full
command-line option. A non-empty list prevents the test from running unless
all of the given options are present on the command line. This can help if a
source file is compiled both with and without optimization, since it is rarely
useful to check the full function body for unoptimized code.

The first line of the expected output for a function fn has the form:
prefix fn: [{ target/xfail selector }]

Subsequent lines of the expected output also start with prefix. In both cases,
whitespace after prefix is not significant.

The test discards assembly directives such as .cfi_startproc and local label
definitions such as .LFBO from the compiler’s assembly output. It then matches
the result against the expected output for a function as a single regular expres-
sion. This means that later lines can use backslashes to refer back to ‘(...)’
captures on earlier lines. For example:



Chapter 7: Testsuites 113

/* { dg-final { check-function-bodies "*x" "" "-DCHECK_ASM" } } */
/*

**x add_wO_s8_m:

*x mov (z[0-9]+\.b), wO

** add zO\.b, pO/m, zO0\.b, \1

** ret

*/

svint8_t add_w0_s8_m (...) { ... }

/e

** add_b0_s8_m:

** mov (z[0-9]+\.b), bO

** add z1\.b, pO/m, zi\.b, \1

** ret

*/

svint8_t add_b0_s8m (...) { ... }
checks whether the implementations of add_w0_s8_m and add_b0_s8_m match
the regular expressions given. The test only runs when ‘~-DCHECK_ASM’ is passed

on the command line.

It is possible to create non-capturing multi-line regular expression groups of
the form ‘(albl...)’ by putting the ‘C’, ‘|” and ‘)’ on separate lines (each still
using prefix). For example:

/*
*x cmple_f16_tied:
*x (.

*x* fcmge pO\.h, p0/z, z1\.h, zO\.h
Kk |

*x* fcmle pO\.h, p0/z, zO\.h, z1\.h

*% )

**x ret

*/

svbool_t cmple_f16_tied (...) { ... }
checks whether cmple_f16_tied is implemented by the fcmge instruction fol-
lowed by ret or by the fcmle instruction followed by ret. The test is still a
single regular rexpression.
A line containing just:

prefix ...

stands for zero or more unmatched lines; the whitespace after prefix is again
not significant.
7.2.7.3 Scan optimization dump files

These commands are available for kind of tree, ltrans-tree, offload-tree, rtl,
offload-rtl, ipa, and wpa-ipa.
scan-kind-dump regex suffix [{ target/xfail selector }]

Passes if regex matches text in the dump file with suffix suffix.

scan-kind-dump-not regex suffix [{ target/xfail selector }]
Passes if regex does not match text in the dump file with suffix suffix.

scan-kind-dump-times regex num suffix [{ target/xfail selector }]
Passes if regex is found exactly num times in the dump file with suffix suffix.



114 GNU Compiler Collection (GCC) Internals

scan-kind-dump-dem regex suffix [{ target/xfail selector }]
Passes if regex matches demangled text in the dump file with suffix suffix.

scan-kind-dump-dem-not regex suffix [{ target/xfail selector }]
Passes if regex does not match demangled text in the dump file with suffix
suffix.

The suffix argument which describes the dump file to be scanned may contain a glob
pattern that must expand to exactly one file name. This is useful if, e.g., different pass
instances are executed depending on torture testing command-line flags, producing dump
files whose names differ only in their pass instance number suffix. For example, to scan
instances 1, 2, 3 of a tree pass “mypass” for occurrences of the string “code has been
optimized”, use:

/* { dg-options "-fdump-tree-mypass" } */
/* { dg-final { scan-tree-dump "code has been optimized" "mypass\[1-3\]" } } */

7.2.7.4 Check for output files

output-exists [{ target/xfail selector }]
Passes if compiler output file exists.

output-exists-not [{ target/xfail selector }]
Passes if compiler output file does not exist.

scan-symbol regexp [{ target/xfail selector }]
Passes if the pattern is present in the final executable.

scan-symbol-not regexp [{ target/xfail selector }]
Passes if the pattern is absent from the final executable.

7.2.7.5 Checks for gcov tests

run-gcov sourcefile
Check line counts in gcov tests.

run-gcov [branches] [calls] { opts sourcefile }
Check branch and/or call counts, in addition to line counts, in gcov tests.

run-gcov-pytest { sourcefile pytest_file }
Check output of gcov intermediate format with a pytest script.

7.2.7.6 Clean up generated test files

Usually the test-framework removes files that were generated during testing. If a testcase,
for example, uses any dumping mechanism to inspect a passes dump file, the testsuite
recognized the dump option passed to the tool and schedules a final cleanup to remove
these files.

There are, however, following additional cleanup directives that can be used to annotate
a testcase "manually".

cleanup-coverage-files
Removes coverage data files generated for this test.



Chapter 7: Testsuites 115

cleanup-modules "list-of-extra-modules"

Removes Fortran module files generated for this test, excluding the module
names listed in keep-modules. Cleaning up module files is usually done au-
tomatically by the testsuite by looking at the source files and removing the
modules after the test has been executed.

module MoD1

end module MoD1

module Mod2

end module Mod2

module moD3

end module moD3

module mod4

end module mod4

! { dg-final { cleanup-modules "modl mod2" } } ! redundant

! { dg-final { keep-modules "mod3 mod4" } }

keep-modules "list-of-modules—not-to-delete"
Whitespace separated list of module names that should not be deleted by
cleanup-modules. If the list of modules is empty, all modules defined in this file
are kept.

module maybe_unneeded

end module maybe_unneeded

module keepl

end module keepl

module keep2

end module keep2

! { dg-final { keep-modules "keepl keep2" } } ! just keep these two
! { dg-final { keep-modules "" } } ! keep all

dg-keep-saved-temps "list-of-suffixes-not-to-delete"
Whitespace separated list of suffixes that should not be deleted automatically
in a testcase that uses ‘-save-temps’.
// { dg-options "-save-temps -fpch-preprocess -I." }
int main() { return 0; }
// { dg-keep-saved-temps ".s" } ! just keep assembler file
// { dg-keep-saved-temps ".s" ".i" } ! ... and .i
// { dg-keep-saved-temps ".ii" ".o" } ! or just .ii and .o

cleanup-profile-file
Removes profiling files generated for this test.

7.3 Ada Language Testsuites

The Ada testsuite includes executable tests from the ACATS testsuite, publicly available
at http://www.ada-auth.org/acats.html.

These tests are integrated in the GCC testsuite in the ‘ada/acats’ directory, and enabled
automatically when running make check, assuming the Ada language has been enabled when
configuring GCC.

You can also run the Ada testsuite independently, using make check-ada, or run a subset
of the tests by specifying which chapter to run, e.g.:

$ make check-ada CHAPTERS="c3 c9"


http://www.ada-auth.org/acats.html

116 GNU Compiler Collection (GCC) Internals

The tests are organized by directory, each directory corresponding to a chapter of the
Ada Reference Manual. So for example, ‘c9’ corresponds to chapter 9, which deals with
tasking features of the language.

The tests are run using two sh scripts: ‘run_acats’ and ‘run_all.sh’. To run the
tests using a simulator or a cross target, see the small customization section at the top of
‘run_all.sh’.

These tests are run using the build tree: they can be run without doing a make install.

7.4 C Language Testsuites

GCC contains the following C language testsuites, in the ‘gcc/testsuite’ directory:

‘gcc.dg’  This contains tests of particular features of the C compiler, using the more
modern ‘dg’ harness. Correctness tests for various compiler features should go
here if possible.

Magic comments determine whether the file is preprocessed, compiled, linked
or run. In these tests, error and warning message texts are compared against
expected texts or regular expressions given in comments. These tests are run
with the options ‘~ansi -pedantic’ unless other options are given in the test.
Except as noted below they are not run with multiple optimization options.

gcc.dg/compat’
This subdirectory contains tests for binary compatibility using
‘lib/compat.exp’, which in turn uses the language-independent support (see
Section 7.8 [Support for testing binary compatibility], page 120).

gcc.dg/cpp’
This subdirectory contains tests of the preprocessor.

‘gcc.dg/debug’
This subdirectory contains tests for debug formats. Tests in this subdirectory
are run for each debug format that the compiler supports.

gcc.dg/format’
This subdirectory contains tests of the ‘-Wformat’ format checking. Tests in
this directory are run with and without ‘~-DWIDE’.

gcc.dg/noncompile’
This subdirectory contains tests of code that should not compile and does not
need any special compilation options. They are run with multiple optimization
options, since sometimes invalid code crashes the compiler with optimization.

gcc.dg/special’
FIXME: describe this.

gcc.c-torture’
This contains particular code fragments which have historically broken easily.
These tests are run with multiple optimization options, so tests for features
which only break at some optimization levels belong here. This also contains
tests to check that certain optimizations occur. It might be worthwhile to
separate the correctness tests cleanly from the code quality tests, but it hasn’t
been done yet.



Chapter 7: Testsuites 117

‘gcc.c-torture/compat’
FIXME: describe this.

This directory should probably not be used for new tests.

‘gcc.c-torture/compile’
This testsuite contains test cases that should compile, but do not need to link
or run. These test cases are compiled with several different combinations of
optimization options. All warnings are disabled for these test cases, so this
directory is not suitable if you wish to test for the presence or absence of
compiler warnings. While special options can be set, and tests disabled on
specific platforms, by the use of ‘.x’ files, mostly these test cases should not
contain platform dependencies. FIXME: discuss how defines such as STACK_
SIZE are used.

gcc.c-torture/execute’
This testsuite contains test cases that should compile, link and run; otherwise
the same comments as for ‘gcc.c-torture/compile’ apply.

gcc.c-torture/execute/ieee’
This contains tests which are specific to IEEE floating point.

gcc.c-torture/unsorted’
FIXME: describe this.

This directory should probably not be used for new tests.

gcc.misc-tests’
This directory contains C tests that require special handling. Some of these
tests have individual expect files, and others share special-purpose expect files:

‘bprobx*.c’
Test ‘~fbranch-probabilities’ using ‘gcc.misc-tests/bprob.exp’ |}
which in turn uses the generic, language-independent framework
(see Section 7.7 [Support for testing profile-directed optimizations]
page 119).

9

‘gcovx.c’ Test gcov output using ‘gcov.exp’, which in turn uses the
language-independent support (see Section 7.6 [Support for testing
gcov], page 118).

‘1386-pf—*.c’
Test  i386-specific  support  for data  prefetch  using
‘i386-prefetch.exp’.

‘gcc.test-framework’

‘dg-*.c’  Test the testsuite itself using ‘gcc.test-framework/test-framework.exp’.J]

FIXME: merge in ‘testsuite/README.gcc’ and discuss the format of test cases and
magic comments more.



118 GNU Compiler Collection (GCC) Internals

7.5 Support for testing link-time optimizations

Tests for link-time optimizations usually require multiple source files that are compiled
separately, perhaps with different sets of options. There are several special-purpose test
directives used for these tests.

{ dg-1to-do do-what-keyword }
do-what-keyword specifies how the test is compiled and whether it is executed.
It is one of:

assemble Compile with ‘-=c’ to produce a relocatable object file.
link Compile, assemble, and link to produce an executable file.

run Produce and run an executable file, which is expected to return an
exit code of 0.

The default is assemble. That can be overridden for a set of tests by redefining
dg-do-what-default within the .exp file for those tests.

Unlike dg-do, dg-1to-do does not support an optional ‘target’ or ‘xfail’ list.
Use dg-skip-if, dg-xfail-if, or dg-xfail-run-if.

{ dg-1to-options { { options } [{ options }] } [{ target selector }1}
This directive provides a list of one or more sets of compiler options to override
LTO_OPTIONS. Each test will be compiled and run with each of these sets of

options.

{ dg-extra-1d-options options [{ target selector }]1}
This directive adds options to the linker options used.

{ dg-suppress-1d-options options [{ target selector }]1}
This directive removes options from the set of linker options used.

7.6 Support for testing gcov

Language-independent support for testing gcov, and for checking that branch profiling
produces expected values, is provided by the expect file ‘1ib/gcov.exp’. gcov tests also
rely on procedures in ‘1ib/gcc-dg.exp’ to compile and run the test program. A typical
gcov test contains the following DejaGnu commands within comments:

{ dg-options "--coverage" }

{ dg-do run { target native } }

{ dg-final { run-gcov sourcefile } }

Checks of gcov output can include line counts, branch percentages, and call return per-
centages. All of these checks are requested via commands that appear in comments in the
test’s source file. Commands to check line counts are processed by default. Commands to
check branch percentages and call return percentages are processed if the run-gcov com-
mand has arguments branches or calls, respectively. For example, the following specifies
checking both, as well as passing ‘-b’ to gcov:

{ dg-final { run-gcov branches calls { -b sourcefile } } }

A line count command appears within a comment on the source line that is expected to
get the specified count and has the form count (cnt). A test should only check line counts
for lines that will get the same count for any architecture.



Chapter 7: Testsuites 119

Commands to check branch percentages (branch) and call return percentages (returns)
are very similar to each other. A beginning command appears on or before the first of a
range of lines that will report the percentage, and the ending command follows that range
of lines. The beginning command can include a list of percentages, all of which are expected
to be found within the range. A range is terminated by the next command of the same kind.
A command branch(end) or returns(end) marks the end of a range without starting a
new one. For example:

if (i > 10 & j > i && j < 20) /* branch(27 50 75) */
/* branch(end) */
foo (i, j);

For a call return percentage, the value specified is the percentage of calls reported to
return. For a branch percentage, the value is either the expected percentage or 100 mi-
nus that value, since the direction of a branch can differ depending on the target or the
optimization level.

Not all branches and calls need to be checked. A test should not check for branches that
might be optimized away or replaced with predicated instructions. Don’t check for calls
inserted by the compiler or ones that might be inlined or optimized away.

A single test can check for combinations of line counts, branch percentages, and call
return percentages. The command to check a line count must appear on the line that will
report that count, but commands to check branch percentages and call return percentages
can bracket the lines that report them.

7.7 Support for testing profile-directed optimizations

The file ‘profopt.exp’ provides language-independent support for checking correct execu-
tion of a test built with profile-directed optimization. This testing requires that a test
program be built and executed twice. The first time it is compiled to generate profile data,
and the second time it is compiled to use the data that was generated during the first
execution. The second execution is to verify that the test produces the expected results.

To check that the optimization actually generated better code, a test can be built and
run a third time with normal optimizations to verify that the performance is better with the
profile-directed optimizations. ‘profopt.exp’ has the beginnings of this kind of support.

‘profopt.exp’ provides generic support for profile-directed optimizations. Each set of
tests that uses it provides information about a specific optimization:
tool tool being tested, e.g., gcc

profile_option
options used to generate profile data

feedback_option
options used to optimize using that profile data

prof_ext suffix of profile data files

PROFOPT_QOPTIONS
list of options with which to run each test, similar to the lists for torture tests

{ dg-final-generate { local-directive } }
This directive is similar to dg-final, but the local-directive is run after the
generation of profile data.



120 GNU Compiler Collection (GCC) Internals

{ dg-final-use { local-directive } }
The local-directive is run after the profile data have been used.

7.8 Support for testing binary compatibility

The file ‘compat . exp’ provides language-independent support for binary compatibility test-
ing. It supports testing interoperability of two compilers that follow the same ABI, or of
multiple sets of compiler options that should not affect binary compatibility. It is intended
to be used for testsuites that complement ABI testsuites.

A test supported by this framework has three parts, each in a separate source file: a main
program and two pieces that interact with each other to split up the functionality being
tested.

‘testname_main.suffix’
Contains the main program, which calls a function in file ‘testname_x.suffix’.

‘testname_x.suffix’
Contains at least one call to a function in ‘testname_y.suffix’.

‘testname_y.suffix’
Shares data with, or gets arguments from, ‘testname_x.suffix’.

Within each test, the main program and one functional piece are compiled by the GCC
under test. The other piece can be compiled by an alternate compiler. If no alternate
compiler is specified, then all three source files are all compiled by the GCC under test.
You can specify pairs of sets of compiler options. The first element of such a pair specifies
options used with the GCC under test, and the second element of the pair specifies options
used with the alternate compiler. Each test is compiled with each pair of options.

‘compat . exp’ defines default pairs of compiler options. These can be overridden by defin-

ing the environment variable COMPAT_OPTIONS as:
COMPAT_QOPTIONS="[list [list {tst1} {alt1}]
...[list {tstn} {altn}]1]"

where tsti and alti are lists of options, with tsti used by the compiler under test and alti
used by the alternate compiler. For example, with [list [1ist {-g -00} {-03}] [list
{-fpic} {-fPIC -02}]1], the test is first built with ‘-g -00’ by the compiler under test and
with ‘=03’ by the alternate compiler. The test is built a second time using ‘-fpic’ by the
compiler under test and ‘-fPIC -02’ by the alternate compiler.

An alternate compiler is specified by defining an environment variable to be the full
pathname of an installed compiler; for C define ALT_CC_UNDER_TEST, and for C++ define
ALT_CXX_UNDER_TEST. These will be written to the ‘site.exp’ file used by DejaGnu. The
default is to build each test with the compiler under test using the first of each pair of
compiler options from COMPAT_OPTIONS. When ALT_CC_UNDER_TEST or ALT_CXX_UNDER_
TEST is same, each test is built using the compiler under test but with combinations of the
options from COMPAT_OPTIONS.

To run only the C++ compatibility suite using the compiler under test and another version
of GCC using specific compiler options, do the following from ‘objdir/gcc’:

rm site.exp
make -k \
ALT_CXX_UNDER_TEST=${alt_prefix}/bin/g++ \



Chapter 7: Testsuites 121

COMPAT_OPTIONS="1lists as shown above" \
check-c++ \
RUNTESTFLAGS="compat .exp"

A test that fails when the source files are compiled with different compilers, but passes
when the files are compiled with the same compiler, demonstrates incompatibility of the
generated code or runtime support. A test that fails for the alternate compiler but passes
for the compiler under test probably tests for a bug that was fixed in the compiler under
test but is present in the alternate compiler.

The binary compatibility tests support a small number of test framework commands that
appear within comments in a test file.

dg-require-x*
These commands can be used in ‘testname_main.suffix’ to skip the test if
specific support is not available on the target.

dg-options
The specified options are used for compiling this particular source file, ap-
pended to the options from COMPAT_OPTIONS. When this command appears in
‘testname_main.suffix’ the options are also used to link the test program.

dg-xfail-if
This command can be used in a secondary source file to specify that compilation
is expected to fail for particular options on particular targets.

7.9 Support for torture testing using multiple options

Throughout the compiler testsuite there are several directories whose tests are run
multiple times, each with a different set of options. These are known as torture tests.
‘lib/torture-options.exp’ defines procedures to set up these lists:

torture-init
Initialize use of torture lists.

set-torture-options
Set lists of torture options to use for tests with and without loops. Optionally
combine a set of torture options with a set of other options, as is done with
Objective-C runtime options.

torture-finish
Finalize use of torture lists.

The ‘. exp’ file for a set of tests that use torture options must include calls to these three
procedures if:
e It calls gcc-dg-runtest and overrides DG_-TORTURE_OPTIONS.
o It calls ${tool}-torture or ${tool}-torture-execute, where tool is c, fortran, or
objc.
e [t calls dg-pch.

It is not necessary for a ‘. exp’ file that calls gcc-dg-runtest to call the torture procedures
if the tests should use the list in DG_TORTURE_OPTIONS defined in ‘gcc-dg.exp’.



122 GNU Compiler Collection (GCC) Internals

Most uses of torture options can override the default lists by defin-

ing TORTURE_OPTIONS or add to the default list by defining ADDI-
TIONAL_TORTURE_OPTIONS. Define these in a ‘.dejagnurc’ file or add
them to the ‘site.exp’ file; for example

set ADDITIONAL_TORTURE_OPTIONS [list \
{ -02 -ftree-loop-linear } \
{ -02 -fpeel-loops } ]

7.10 Support for testing GIMPLE passes

As of gee 7, C functions can be tagged with __GIMPLE to indicate that the function body
will be GIMPLE, rather than C. The compiler requires the option ‘~fgimple’ to enable this
functionality. For example:

/* { dg-do compile } */
/* { dg-options "-0 -fgimple" } */

void __GIMPLE (startwith ("dse2")) foo ()
{

int a;

bb_2:
if (a > 4)
goto bb_3;
else
goto bb_4;

bb_3:
a_2 = 10;
goto bb_5;

bb_4:
a_3

20;

bb_5:
__PHI (bb_3: a_2, bb_4: a_3);
a_1l + 4;

[ |

-1
_4
return;
}
The startwith argument indicates at which pass to begin.

Use the dump modifier -gimple (e.g. ‘~fdump-tree-all-gimple’) to make tree dumps
more closely follow the format accepted by the GIMPLE parser.

Example DejaGnu tests of GIMPLE can be seen in the source tree at
‘gcc/testsuite/gec.dg/gimplefe-*.c’.

The __GIMPLE parser is integrated with the C tokenizer and preprocessor, so it should be
possible to use macros to build out test coverage.

7.11 Support for testing RTL passes

As of gee 7, C functions can be tagged with __RTL to indicate that the function body will
be RTL, rather than C. For example:
double __RTL (startwith ("ira")) test (struct foo *f, const struct bar *b)



Chapter 7: Testsuites 123

{
(function "test"
[...snip; various directives go in here...]
) ;; function "test"
}

The startwith argument indicates at which pass to begin.

The parser expects the RTL body to be in the format emitted by this dumping function:
DEBUG_FUNCTION void
print_rtx_function (FILE *outfile, function *fn, bool compact);
when "compact" is true. So you can capture RTL in the correct format from the debugger
using:
(gdb) print_rtx_function (stderr, cfun, true);

and copy and paste the output into the body of the C function.

Example DejaGnu tests of RTL can be seen in the source tree under
‘gcc/testsuite/gec.dg/rtl’.

The __RTL parser is not integrated with the C tokenizer or preprocessor, and works simply
by reading the relevant lines within the braces. In particular, the RTL body must be on
separate lines from the enclosing braces, and the preprocessor is not usable within it.






Chapter 8: Option specification files 125

8 Option specification files

Most GCC command-line options are described by special option definition files, the names
of which conventionally end in .opt. This chapter describes the format of these files.

8.1 Option file format

Option files are a simple list of records in which each field occupies its own line and in which
the records themselves are separated by blank lines. Comments may appear on their own
line anywhere within the file and are preceded by semicolons. Whitespace is allowed before
the semicolon.

The files can contain the following types of record:

e A language definition record. These records have two fields: the string ‘Language’ and
the name of the language. Once a language has been declared in this way, it can be
used as an option property. See Section 8.2 [Option properties|, page 127.

e A target specific save record to save additional information. These records have two
fields: the string ‘TargetSave’, and a declaration type to go in the c1_target_option
structure.

e A variable record to define a variable used to store option information. These records
have two fields: the string ‘Variable’; and a declaration of the type and name of the
variable, optionally with an initializer (but without any trailing ‘;’). These records may
be used for variables used for many options where declaring the initializer in a single
option definition record, or duplicating it in many records, would be inappropriate, or
for variables set in option handlers rather than referenced by Var properties.

e A variable record to define a variable used to store option information. These records
have two fields: the string ‘TargetVariable’, and a declaration of the type and
name of the variable, optionally with an initializer (but without any trailing ‘;’).
‘TargetVariable’ is a combination of ‘Variable’ and ‘TargetSave’ records in that the
variable is defined in the gcc_options structure, but these variables are also stored in
the cl_target_option structure. The variables are saved in the target save code and
restored in the target restore code.

e A variable record to record any additional files that the ‘options.h’ file should include.
This is useful to provide enumeration or structure definitions needed for target variables.
These records have two fields: the string ‘HeaderInclude’ and the name of the include
file.

e A variable record to record any additional files that the ‘options.cc’ or
‘options-save.cc’ file should include. This is useful to provide inline functions
needed for target variables and/or #ifdef sequences to properly set up the
initialization. These records have two fields: the string ‘SourceInclude’ and the
name of the include file.

e An enumeration record to define a set of strings that may be used as arguments to an
option or options. These records have three fields: the string ‘Enum’, a space-separated
list of properties and help text used to describe the set of strings in ‘~-help’ output.
Properties use the same format as option properties; the following are valid:



126

GNU Compiler Collection (GCC) Internals

Name (name)
This property is required; name must be a name (suitable for use in C
identifiers) used to identify the set of strings in Enum option properties.

Type (type)
This property is required; type is the C type for variables set by options
using this enumeration together with Var.

UnknownError (message)
The message message will be used as an error message if the argument is
invalid; for enumerations without UnknownError, a generic error message
is used. message should contain a single ‘%qgs’ format, which will be used
to format the invalid argument.

An enumeration value record to define one of the strings in a set given in an ‘Enum’
record. These records have two fields: the string ‘EnumValue’ and a space-separated
list of properties. Properties use the same format as option properties; the following
are valid:

Enum (name)
This property is required; name says which ‘Enum’ record this ‘EnumValue’
record corresponds to.

String(string)
This property is required; string is the string option argument being de-
scribed by this record.

Value(value)
This property is required; it says what value (representable as int) should
be used for the given string.

Canonical
This property is optional. If present, it says the present string is the
canonical one among all those with the given value. Other strings yielding
that value will be mapped to this one so specs do not need to handle them.

DriverOnly
This property is optional. If present, the present string will only be ac-
cepted by the driver. This is used for cases such as ‘-march=native’ that
are processed by the driver so that ‘gcc -v’ shows how the options chosen
depended on the system on which the compiler was run.

Set (number)
This property is optional, required for enumerations used in EnumSet op-
tions. number should be decimal number between 1 and 64 inclusive and
divides the enumeration into a set of sets of mutually exclusive arguments.
Arguments with the same number can’t be specified together in the same
option, but arguments with different number can. value needs to be chosen
such that a mask of all value values from the same set number bitwise ored
doesn’t overlap with masks for other sets. When -foption=arg_from_
setl,arg_from_set4 and -fno-option=arg_from_set3 are used, the ef-
fect is that previous value of the Var will get bits from set 1 and 4 masks



Chapter 8: Option specification files 127

cleared, ored Value of arg_from_setl and arg_from_set4 and then will
get bits from set 3 mask cleared.

e An option definition record. These records have the following fields:

w»

1. the name of the option, with the leading removed

2. a space-separated list of option properties (see Section 8.2 [Option properties],
page 127)

3. the help text to use for ‘--help’ (omitted if the second field contains the
Undocumented property).

By default, all options beginning with “f”, “W” or “m” are implicitly assumed to take a
“no-" form. This form should not be listed separately. If an option beginning with one
of these letters does not have a “no-” form, you can use the RejectNegative property
to reject it.

The help text is automatically line-wrapped before being displayed. Normally the name
of the option is printed on the left-hand side of the output and the help text is printed
on the right. However, if the help text contains a tab character, the text to the left of
the tab is used instead of the option’s name and the text to the right of the tab forms
the help text. This allows you to elaborate on what type of argument the option takes.

There is no support for different help texts for different languages. If an option is
supported for multiple languages, use a generic description that is correct for all of
them.

If an option has multiple option definition records (in different front ends’ ‘*.opt’ files,
and/or ‘gcc/common. opt’, for example), convention is to not duplicate the help text for
each of them, but instead put a comment like ; documented in common.opt in place
of the help text for all but one of the multiple option definition records.

e A target mask record. These records have one field of the form ‘Mask(x)’. The options-
processing script will automatically allocate a bit in target_flags (see Section 18.3
[Run-time Target|, page 510) for each mask name x and set the macro MASK_x to the
appropriate bitmask. It will also declare a TARGET_x macro that has the value 1 when
bit MASK_x is set and 0 otherwise.

They are primarily intended to declare target masks that are not associated with user
options, either because these masks represent internal switches or because the options
are not available on all configurations and yet the masks always need to be defined.

8.2 Option properties

The second field of an option record can specify any of the following properties. When an
option takes an argument, it is enclosed in parentheses following the option property name.
The parser that handles option files is quite simplistic, and will be tricked by any nested
parentheses within the argument text itself; in this case, the entire option argument can be
wrapped in curly braces within the parentheses to demarcate it, e.g.:

Condition({defined (USE_CYGWIN_LIBSTDCXX_WRAPPERS)})
Common The option is available for all languages and targets.

Target The option is available for all languages but is target-specific.



128 GNU Compiler Collection (GCC) Internals

Driver The option is handled by the compiler driver using code not shared with the
compilers proper (‘ccl’ etc.).

language The option is available when compiling for the given language.

It is possible to specify several different languages for the same option. Each lan-
guage must have been declared by an earlier Language record. See Section 8.1
[Option file format], page 125.

RejectDriver
The option is only handled by the compilers proper (‘cc1’ etc.) and should not
be accepted by the driver.

RejectNegative
The option does not have a “no-” form. All options beginning with “f”, “W?”
or “m” are assumed to have a “no-” form unless this property is used.

Negative (othername)

The option will turn off another option othername, which is the option name
with the leading “-” removed. This chain action will propagate through the
Negative property of the option to be turned off. The driver will prune op-
tions, removing those that are turned off by some later option. This pruning is
not done for options with Joined or JoinedOrMissing properties, unless the
options have both the RejectNegative property and the Negative property
mentions itself.

As a consequence, if you have a group of mutually-exclusive options, their
Negative properties should form a circular chain. For example, if options ‘-a’,
‘-b’ and ‘-¢’ are mutually exclusive, their respective Negative properties should
be ‘Negative(b)’, ‘Negative(c)’ and ‘Negative(a)’.

Joined

Separate The option takes a mandatory argument. Joined indicates that the option and
argument can be included in the same argv entry (as with -mflush-func=name,
for example). Separate indicates that the option and argument can be separate
argv entries (as with —o0). An option is allowed to have both of these properties.

JoinedOrMissing
The option takes an optional argument. If the argument is given, it will be part
of the same argv entry as the option itself.

This property cannot be used alongside Joined or Separate.

MissingArgError (message)
For an option marked Joined or Separate, the message message will be used
as an error message if the mandatory argument is missing; for options without
MissingArgError, a generic error message is used. message should contain a
single ‘%gs’ format, which will be used to format the name of the option passed.

Args(n)  For an option marked Separate, indicate that it takes n arguments. The default
is 1.

UInteger The option’s argument is a non-negative integer consisting of either decimal
or hexadecimal digits interpreted as int. Hexadecimal integers may optionally



Chapter 8: Option specification files 129

start with the 0x or 0X prefix. The option parser validates and converts the
argument, before passing it to the relevant option handler. UInteger should
also be used with options like ~-falign-loops where both -falign-loops and
-falign-loops=n are supported to make sure the saved options are given a
full integer. Positive values of the argument in excess of INT_MAX wrap around
Zero.

Host_Wide_Int

The option’s argument is a non-negative integer consisting of either decimal or
hexadecimal digits interpreted as the widest integer type on the host. As with
an UInteger argument, hexadecimal integers may optionally start with the 0x
or 0X prefix. The option parser validates and converts the argument before
passing it to the relevant option handler. Host_Wide_Int should be used with
options that need to accept very large values. Positive values of the argument
in excess of HOST_WIDE_INT_M1U are assigned HOST_WIDE_INT_M1U.

IntegerRange(n, m)

ByteSize

ToLower

The options’s arguments are integers of type int. The option’s parser validates
that the value of an option integer argument is within the closed range [n, m].

A property applicable only to UInteger or Host_Wide_Int arguments. The
option’s integer argument is interpreted as if in infinite precision using satu-
ration arithmetic in the corresponding type. The argument may be followed
by a ‘byte-size’ suffix designating a multiple of bytes such as kB and KiB for
kilobyte and kibibyte, respectively, MB and MiB for megabyte and mebibyte, GB
and GiB for gigabyte and gigibyte, and so on. ByteSize should be used for
with options that take a very large argument representing a size in bytes, such
as ‘-Wlarger-than=".

The option’s argument should be converted to lowercase as part of putting it in
canonical form, and before comparing with the strings indicated by any Enum

property.

NoDriverArg

Var (var)

For an option marked Separate, the option only takes an argument in the com-
piler proper, not in the driver. This is for compatibility with existing options
that are used both directly and via ‘-Wp,’; new options should not have this
property.

The state of this option should be stored in variable var (actually a macro for
global_options.x_var). The way that the state is stored depends on the type
of option:

WarnRemoved

The option is removed and every usage of such option will result in a warning.
We use it option backward compatibility.

Var(var, set)

The option controls an integer variable var and is active when var equals set.
The option parser will set var to set when the positive form of the option is
used and !set when the “no-” form is used.

var is declared in the same way as for the single-argument form described above.



130 GNU Compiler Collection (GCC) Internals

e If the option uses the Mask or InverseMask properties, var is the integer
variable that contains the mask.

e If the option is a normal on/off switch, var is an integer variable that is
nonzero when the option is enabled. The options parser will set the variable
to 1 when the positive form of the option is used and 0 when the “no-”
form is used.

e If the option takes an argument and has the UInteger property, var is an
integer variable that stores the value of the argument.

e If the option takes an argument and has the Enum property, var is a variable
(type given in the Type property of the ‘Enum’ record whose Name property
has the same argument as the Enum property of this option) that stores the
value of the argument.

e If the option has the Defer property, var is a pointer to a
VEC(cl_deferred_option,heap) that stores the option for later
processing. (var is declared with type void * and needs to be cast to
VEC(cl_deferred_option,heap) before use.)

e Otherwise, if the option takes an argument, var is a pointer to the argument
string. The pointer will be null if the argument is optional and wasn’t given.

The option-processing script will usually zero-initialize var. You can modify
this behavior using Init.

Init(value)
The variable specified by the Var property should be statically initialized to
value. If more than one option using the same variable specifies Init, all must
specify the same initializer.

Mask (name)
The option is associated with a bit in the target_flags variable (see
Section 18.3 [Run-time Target], page 510) and is active when that bit is set.
You may also specify Var to select a variable other than target_flags.

The options-processing script will automatically allocate a unique bit for the
option. If the option is attached to ‘target_flags’, the script will set the
macro MASK_name to the appropriate bitmask. It will also declare a TARGET_
name macro that has the value 1 when the option is active and 0 otherwise. If
you use Var to attach the option to a different variable, the bitmask macro with
be called OPTION_MASK_name.

InverseMask (othername)

InverseMask(othername, thisname)
The option is the inverse of another option that has the Mask (othername) prop-
erty. If thisname is given, the options-processing script will declare a TARGET_
thisname macro that is 1 when the option is active and 0 otherwise.

Enum(name)
The option’s argument is a string from the set of strings associated with the
corresponding ‘Enum’ record. The string is checked and converted to the integer
specified in the corresponding ‘EnumValue’ record before being passed to option
handlers.



Chapter 8: Option specification files 131

EnumSet

EnumBitSet

Defer

Alias(opt)

Must be used together with the Enum(name) property. Corresponding ‘Enum’
record must use Set properties. The option’s argument is either a string from
the set like for Enum(name), but with a slightly different behavior that the
whole Var isn’t overwritten, but only the bits in all the enumeration values
with the same set bitwise ored together. Or option’s argument can be a comma
separated list of strings where each string is from a different Set (number).

Must be used together with the Enum(name) property. Similar to ‘EnumSet’,
but corresponding ‘Enum’ record must not use Set properties, each EnumValue
should have Value that is a power of 2, each value is treated as its own set and
its value as the set’s mask, so there are no mutually exclusive arguments.

The option should be stored in a vector, specified with Var, for later processing.

Alias(opt, arg)
Alias(opt, posarg, negarg)

The option is an alias for ‘-opt’ (or the negative form of that option, depending
on NegativeAlias). In the first form, any argument passed to the alias is
considered to be passed to ‘—opt’, and ‘-opt’ is considered to be negated if the
alias is used in negated form. In the second form, the alias may not be negated
or have an argument, and posarg is considered to be passed as an argument to
‘—=opt’. In the third form, the alias may not have an argument, if the alias is
used in the positive form then posarg is considered to be passed to ‘-opt’, and
if the alias is used in the negative form then negarg is considered to be passed
to ‘—opt’.

Aliases should not specify Var or Mask or UInteger. Aliases should normally
specify the same languages as the target of the alias; the flags on the target
will be used to determine any diagnostic for use of an option for the wrong
language, while those on the alias will be used to identify what command-line
text is the option and what text is any argument to that option.

When an Alias definition is used for an option, driver specs do not need to
handle it and no ‘OPT_’ enumeration value is defined for it; only the canonical
form of the option will be seen in those places.

NegativeAlias

For an option marked with Alias(opt), the option is considered to be an alias
for the positive form of ‘~opt’ if negated and for the negative form of ‘-opt’ if
not negated. NegativeAlias may not be used with the forms of Alias taking
more than one argument.

Ignore This option is ignored apart from printing any warning specified using Warn.
The option will not be seen by specs and no ‘OPT_’ enumeration value is defined
for it.

SeparateAlias

For an option marked with Joined, Separate and Alias, the option only acts
as an alias when passed a separate argument; with a joined argument it acts as



132 GNU Compiler Collection (GCC) Internals

)

a normal option, with an ‘OPT_’ enumeration value. This is for compatibility
with the Java ‘-d’ option and should not be used for new options.

Warn(message)
If this option is used, output the warning message. message is a format string,
either taking a single operand with a ‘%qgs’ format which is the option name, or
not taking any operands, which is passed to the ‘warning’ function. If an alias
is marked Warn, the target of the alias must not also be marked Warn.

Warning  This is a warning option and should be shown as such in ‘--help’ output. This
flag does not currently affect anything other than ‘--help’.

Optimization
This is an optimization option. It should be shown as such in ‘--help’ output,
and any associated variable named using Var should be saved and restored when
the optimization level is changed with optimize attributes.

PerFunction
This is an option that can be overridden on a per-function basis. Optimization
implies PerFunction, but options that do not affect executable code generation
may use this flag instead, so that the option is not taken into account in ways
that might affect executable code generation.

Param This is an option that is a parameter.

Undocumented
The option is deliberately missing documentation and should not be included
in the ‘--help’ output.

Condition(cond)
The option should only be accepted if preprocessor condition cond is true. Note
that any C declarations associated with the option will be present even if cond
is false; cond simply controls whether the option is accepted and whether it is
printed in the ‘--help’ output.

Save Build the cl_target_option structure to hold a copy of the option, add the
functions cl_target_option_save and cl_target_option_restore to save
and restore the options.

SetByCombined

The option may also be set by a combined option such as ‘~ffast-math’. This
causes the gcc_options struct to have a field frontend_set_name, where name
is the name of the field holding the value of this option (without the leading
x_). This gives the front end a way to indicate that the value has been set
explicitly and should not be changed by the combined option. For example,
some front ends use this to prevent ‘-ffast-math’ and ‘-fno-fast-math’ from
changing the value of ‘~fmath-errno’ for languages that do not use errno.

EnabledBy (opt)

EnabledBy (opt || opt2)

EnabledBy (opt && opt2)
If not explicitly set, the option is set to the value of ‘-opt’; multiple options can
be given, separated by | |. The third form using && specifies that the option is



Chapter 8: Option specification files 133

only set if both opt and opt2 are set. The options opt and opt2 must have the
Common property; otherwise, use LangEnabledBy.

LangEnabledBy(language, opt)

LangEnabledBy (language, opt, posarg, negarg)
When compiling for the given language, the option is set to the value of ‘-opt’,
if not explicitly set. opt can be also a list of | | separated options. In the second
form, if opt is used in the positive form then posarg is considered to be passed
to the option, and if opt is used in the negative form then negarg is considered
to be passed to the option. It is possible to specify several different languages.
Each language must have been declared by an earlier Language record. See
Section 8.1 [Option file format], page 125.

NoDWARFRecord
The option is omitted from the producer string written by
‘-grecord-gcc-switches’.

PchIgnore
Even if this is a target option, this option will not be recorded / compared to
determine if a precompiled header file matches.

CPP(var) The state of this option should be kept in sync with the preprocessor option
var. If this property is set, then properties Var and Init must be set as well.

CppReason (CPP_W_Enum)
This warning option corresponds to cpplib.h warning reason code
CPP_W_Enum. This should only be used for warning options of the C-family
front-ends.






Chapter 9: Passes and Files of the Compiler 135

9 Passes and Files of the Compiler

This chapter is dedicated to giving an overview of the optimization and code generation
passes of the compiler. In the process, it describes some of the language front end interface,
though this description is no where near complete.

9.1 Parsing pass

The language front end is invoked only once, via lang_hooks.parse_file, to parse the
entire input. The language front end may use any intermediate language representation
deemed appropriate. The C front end uses GENERIC trees (see Chapter 11 [GENERIC],
page 169), plus a double handful of language specific tree codes defined in ‘c-common.def’.
The Fortran front end uses a completely different private representation.

At some point the front end must translate the representation used in the front end to a
representation understood by the language-independent portions of the compiler. Current
practice takes one of two forms. The C front end manually invokes the gimplifier (see
Chapter 12 [GIMPLE], page 217) on each function, and uses the gimplifier callbacks to
convert the language-specific tree nodes directly to GIMPLE before passing the function off
to be compiled. The Fortran front end converts from a private representation to GENERIC,
which is later lowered to GIMPLE when the function is compiled. Which route to choose
probably depends on how well GENERIC (plus extensions) can be made to match up with
the source language and necessary parsing data structures.

BUG: Gimplification must occur before nested function lowering, and nested function
lowering must be done by the front end before passing the data off to cgraph.

TODO: Cgraph should control nested function lowering. It would only be invoked when
it is certain that the outer-most function is used.

TODO: Cgraph needs a gimplify_function callback. It should be invoked when (1) it is
certain that the function is used, (2) warning flags specified by the user require some amount
of compilation in order to honor, (3) the language indicates that semantic analysis is not
complete until gimplification occurs. Hum. . . this sounds overly complicated. Perhaps we
should just have the front end gimplify always; in most cases it’s only one function call.

The front end needs to pass all function definitions and top level declarations off to the
middle-end so that they can be compiled and emitted to the object file. For a simple
procedural language, it is usually most convenient to do this as each top level declaration
or definition is seen. There is also a distinction to be made between generating functional
code and generating complete debug information. The only thing that is absolutely required
for functional code is that function and data definitions be passed to the middle-end. For
complete debug information, function, data and type declarations should all be passed as
well.

In any case, the front end needs each complete top-level function or data declaration,
and each data definition should be passed to rest_of_decl_compilation. Each complete
type definition should be passed to rest_of_type_compilation. Each function definition
should be passed to cgraph_finalize_function.

TODO: I know rest_of_compilation currently has all sorts of RTL generation semantics.

I plan to move all code generation bits (both Tree and RTL) to compile_function. Should
we hide cgraph from the front ends and move back to rest_of_compilation as the official



136 GNU Compiler Collection (GCC) Internals

interface? Possibly we should rename all three interfaces such that the names match in
some meaningful way and that is more descriptive than "rest_of".

The middle-end will, at its option, emit the function and data definitions immediately or
queue them for later processing.

9.2 Gimplification pass

Gimplification is a whimsical term for the process of converting the intermediate represen-
tation of a function into the GIMPLE language (see Chapter 12 [GIMPLE], page 217). The
term stuck, and so words like “gimplification”, “gimplify”, “gimplifier” and the like are
sprinkled throughout this section of code.

While a front end may certainly choose to generate GIMPLE directly if it chooses, this
can be a moderately complex process unless the intermediate language used by the front
end is already fairly simple. Usually it is easier to generate GENERIC trees plus extensions
and let the language-independent gimplifier do most of the work.

The main entry point to this pass is gimplify_function_tree located in ‘gimplify.cc’.
From here we process the entire function gimplifying each statement in turn. The main
workhorse for this pass is gimplify_expr. Approximately everything passes through here
at least once, and it is from here that we invoke the lang_hooks.gimplify_expr callback.

The callback should examine the expression in question and return GS_UNHANDLED if the
expression is not a language specific construct that requires attention. Otherwise it should
alter the expression in some way to such that forward progress is made toward producing
valid GIMPLE. If the callback is certain that the transformation is complete and the
expression is valid GIMPLE, it should return GS_ALL_DONE. Otherwise it should return
GS_OK, which will cause the expression to be processed again. If the callback encounters
an error during the transformation (because the front end is relying on the gimplification
process to finish semantic checks), it should return GS_ERROR.

9.3 Pass manager

The pass manager is located in ‘passes.cc’, ‘tree-optimize.c’ and ‘tree-pass.h’. It
processes passes as described in ‘passes.def’. Its job is to run all of the individual passes
in the correct order, and take care of standard bookkeeping that applies to every pass.

The theory of operation is that each pass defines a structure that represents everything
we need to know about that pass—when it should be run, how it should be run, what
intermediate language form or on-the-side data structures it needs. We register the pass to
be run in some particular order, and the pass manager arranges for everything to happen
in the correct order.

The actuality doesn’t completely live up to the theory at present. Command-line switches
and timevar_id_t enumerations must still be defined elsewhere. The pass manager vali-
dates constraints but does not attempt to (re-)generate data structures or lower intermediate
language form based on the requirements of the next pass. Nevertheless, what is present is
useful, and a far sight better than nothing at all.

Each pass should have a unique name. Each pass may have its own dump file (for GCC
debugging purposes). Passes with a name starting with a star do not dump anything.
Sometimes passes are supposed to share a dump file / option name. To still give these



Chapter 9: Passes and Files of the Compiler 137

unique names, you can use a prefix that is delimited by a space from the part that is used
for the dump file / option name. E.g. When the pass name is "ud dce", the name used for
dump file/options is "dce".

TODO: describe the global variables set up by the pass manager, and a brief description
of how a new pass should use it. I need to look at what info RTL passes use first. . .

9.4 Inter-procedural optimization passes

The inter-procedural optimization (IPA) passes use call graph information to perform trans-
formations across function boundaries. IPA is a critical part of link-time optimization (LTO)
and whole-program (WHOPR) optimization, and these passes are structured with the needs
of LTO and WHOPR in mind by dividing their operations into stages. For detailed discus-
sion of the LTO/WHOPR IPA pass stages and interfaces, see Section 25.3 [IPA], page 724.

The following briefly describes the inter-procedural optimization (IPA) passes, which
are split into small IPA passes, regular IPA passes, and late IPA passes, according to the
LTO/WHOPR processing model.

9.4.1 Small IPA passes

A small TPA pass is a pass derived from simple_ipa_opt_pass. As described in Section 25.3
[IPA], page 724, it does everything at once and defines only the Ezecute stage. During this
stage it accesses and modifies the function bodies. No generate_summary, read_summary,
or write_summary hooks are defined.

e IPA free lang data
This pass frees resources that are used by the front end but are not needed once it is
done. It is located in ‘tree.cc’ and is described by pass_ipa_free_lang_data.

e IPA function and variable visibility
This is a local function pass handling visibilities of all symbols. This happens before
LTO streaming, so ‘~fwhole-program’ should be ignored at this level. It is located
in ‘ipa-visibility.cc’ and is described by pass_ipa_function_and_variable_
visibility.

e IPA remove symbols
This pass performs reachability analysis and reclaims all unreachable nodes. It is
located in ‘passes.cc’ and is described by pass_ipa_remove_symbols.

e [PA OpenACC
This is a pass group for OpenACC processing. It is located in ‘tree-ssa-loop.cc’
and is described by pass_ipa_oacc.

e [PA points-to analysis
This is a tree-based points-to analysis pass. The idea behind this analyzer is to generate
set constraints from the program, then solve the resulting constraints in order to gen-
erate the points-to sets. It is located in ‘tree-ssa-structalias.cc’ and is described
by pass_ipa_pta.

e IPA OpenACC kernels

This is a pass group for processing OpenACC kernels regions. It is a subpass of the
IPA OpenACC pass group that runs on offloaded functions containing OpenACC ker-



138 GNU Compiler Collection (GCC) Internals

nels loops. It is located in ‘tree-ssa-loop.cc’ and is described by pass_ipa_oacc_
kernels.

e Target clone
This is a pass for parsing functions with multiple target attributes. It is located in
‘multiple_target.cc’ and is described by pass_target_clone.

e IPA auto profile
This pass uses AutoFDO profiling data to annotate the control flow graph. It is located
in ‘auto-profile.cc’ and is described by pass_ipa_auto_profile.

e [PA tree profile
This pass does profiling for all functions in the call graph. It calculates branch prob-
abilities and basic block execution counts. It is located in ‘tree-profile.cc’ and is
described by pass_ipa_tree_profile.

e IPA free function summary
This pass is a small IPA pass when argument small_p is true. It releases inline function
summaries and call summaries. It is located in ‘ipa-fnsummary.cc’ and is described
by pass_ipa_free_free_fn_summary.

e IPA increase alignment
This pass increases the alignment of global arrays to improve vectorization. It is located
in ‘tree-vectorizer.cc’ and is described by pass_ipa_increase_alignment.

e [PA transactional memory
This pass is for transactional memory support. It is located in ‘trans-mem.cc’ and is
described by pass_ipa_tm.

e IPA lower emulated TLS
This pass lowers thread-local storage (TLS) operations to emulation functions provided

by libgcc. It is located in ‘tree-emutls.cc’ and is described by pass_ipa_lower_
emutls.

9.4.2 Regular IPA passes

A regular IPA pass is a pass derived from ipa_opt_pass_d that is executed in WHOPR
compilation. Regular IPA passes may have summary hooks implemented in any of the
LGEN, WPA or LTRANS stages (see Section 25.3 [I[PA], page 724).

e IPA whole program visibility

This pass performs various optimizations involving symbol visibility with
‘~fwhole-program’, including symbol privatization, discovering local functions, and
dismantling comdat groups. It is located in ‘ipa-visibility.cc’ and is described by
pass_ipa_whole_program_visibility.

e [PA profile

The IPA profile pass propagates profiling frequencies across the call graph. It is located
in ‘ipa-profile.cc’ and is described by pass_ipa_profile.

e IPA identical code folding
This is the inter-procedural identical code folding pass. The goal of this transformation

is to discover functions and read-only variables that have exactly the same semantics.
It is located in ‘ipa-icf.cc’ and is described by pass_ipa_icf.



Chapter 9: Passes and Files of the Compiler 139

e IPA devirtualization

This pass performs speculative devirtualization based on the type inheritance graph.
When a polymorphic call has only one likely target in the unit, it is turned into a
speculative call. It is located in ‘ipa-devirt.cc’ and is described by pass_ipa_devirt.

e [PA constant propagation

The goal of this pass is to discover functions that are always invoked with some argu-
ments with the same known constant values and to modify the functions accordingly.
It can also do partial specialization and type-based devirtualization. It is located in
‘ipa-cp.cc’ and is described by pass_ipa_cp.

e [PA scalar replacement of aggregates

This pass can replace an aggregate parameter with a set of other parameters represent-
ing part of the original, turning those passed by reference into new ones which pass
the value directly. It also removes unused function return values and unused function
parameters. This pass is located in ‘ipa-sra.cc’ and is described by pass_ipa_sra.

e IPA constructor/destructor merge

This pass merges multiple constructors and destructors for static objects into single
functions. It’s only run at LTO time unless the target doesn’t support constructors
and destructors natively. The pass is located in ‘ipa.cc’ and is described by pass_
ipa_cdtor_merge.

e IPA function summary

This pass provides function analysis for inter-procedural passes. It collects estimates of
function body size, execution time, and frame size for each function. It also estimates
information about function calls: call statement size, time and how often the parameters
change for each call. It is located in ‘ipa-fnsummary.cc’ and is described by pass_
ipa_fn_summary.

e IPA inline

The IPA inline pass handles function inlining with whole-program knowledge. Small
functions that are candidates for inlining are ordered in increasing badness, bounded
by unit growth parameters. Unreachable functions are removed from the call graph.
Functions called once and not exported from the unit are inlined. This pass is located
in ‘ipa-inline.cc’ and is described by pass_ipa_inline.

e IPA pure/const analysis

This pass marks functions as being either const (TREE_READONLY) or pure (DECL_PURE_
P). The per-function information is produced by pure_const_generate_summary, then
the global information is computed by performing a transitive closure over the call
graph. It is located in ‘ipa-pure-const.cc’ and is described by pass_ipa_pure_
const.

e [PA free function summary

This pass is a regular IPA pass when argument small_p is false. It releases inline
function summaries and call summaries. It is located in ‘ipa-fnsummary.cc’ and is
described by pass_ipa_free_fn_summary.



140 GNU Compiler Collection (GCC) Internals

o IPA reference

This pass gathers information about how variables whose scope is confined to the
compilation unit are used. It is located in ‘ipa-reference.cc’ and is described by
pass_ipa_reference.

e [PA single use

This pass checks whether variables are used by a single function. It is located in
‘ipa.cc’ and is described by pass_ipa_single_use.

e IPA comdats
This pass looks for static symbols that are used exclusively within one comdat group,

and moves them into that comdat group. It is located in ‘ipa-comdats.cc’ and is
described by pass_ipa_comdats.

9.4.3 Late IPA passes

Late IPA passes are simple IPA passes executed after the regular passes. In WHOPR mode
the passes are executed after partitioning and thus see just parts of the compiled unit.

e Materialize all clones
Once all functions from compilation unit are in memory, produce all clones and update
all calls. It is located in ‘ipa.cc’ and is described by pass_materialize_all_clones.
e IPA points-to analysis
Points-to analysis; this is the same as the points-to-analysis pass run with the small
IPA passes (see Section 9.4.1 [Small IPA passes|, page 137).
e OpenMP simd clone

This is the OpenMP constructs’ SIMD clone pass. It creates the appropriate
SIMD clones for functions tagged as elemental SIMD functions. It is located in
‘omp-simd-clone.cc’ and is described by pass_omp_simd_clone.

9.5 Tree SSA passes

The following briefly describes the Tree optimization passes that are run after gimplification
and what source files they are located in.

e Remove useless statements

This pass is an extremely simple sweep across the gimple code in which we identify
obviously dead code and remove it. Here we do things like simplify if statements
with constant conditions, remove exception handling constructs surrounding code that
obviously cannot throw, remove lexical bindings that contain no variables, and other
assorted simplistic cleanups. The idea is to get rid of the obvious stuff quickly rather
than wait until later when it’s more work to get rid of it. This pass is located in
‘tree-cfg.cc’ and described by pass_remove_useless_stmts.

e OpenMP lowering

If OpenMP generation (‘-fopenmp’) is enabled, this pass lowers OpenMP constructs
into GIMPLE.

Lowering of OpenMP constructs involves creating replacement expressions for local
variables that have been mapped using data sharing clauses, exposing the control flow
of most synchronization directives and adding region markers to facilitate the creation



Chapter 9: Passes and Files of the Compiler 141

of the control flow graph. The pass is located in ‘omp-low.cc’ and is described by
pass_lower_omp.

e OpenMP expansion

If OpenMP generation (‘-fopenmp’) is enabled, this pass expands parallel regions
into their own functions to be invoked by the thread library. The pass is located
in ‘omp-low.cc’ and is described by pass_expand_omp.

e Lower control flow

This pass flattens if statements (COND_EXPR) and moves lexical bindings (BIND_EXPR)
out of line. After this pass, all if statements will have exactly two goto statements in
its then and else arms. Lexical binding information for each statement will be found
in TREE_BLOCK rather than being inferred from its position under a BIND_EXPR. This
pass is found in ‘gimple-low.cc’ and is described by pass_lower_cf.

e Lower exception handling control flow

This pass decomposes high-level exception handling constructs (TRY_FINALLY_EXPR and
TRY_CATCH_EXPR) into a form that explicitly represents the control flow involved. After
this pass, lookup_stmt_eh_region will return a non-negative number for any state-
ment that may have EH control flow semantics; examine tree_can_throw_internal
or tree_can_throw_external for exact semantics. Exact control flow may be ex-
tracted from foreach_reachable_handler. The EH region nesting tree is defined in
‘except.h’ and built in ‘except.cc’. The lowering pass itself is in ‘tree-eh.cc’ and
is described by pass_lower_eh.

e Build the control flow graph

This pass decomposes a function into basic blocks and creates all of the edges that
connect them. It is located in ‘tree-cfg.cc’ and is described by pass_build_cfg.

e Find all referenced variables

This pass walks the entire function and collects an array of all variables referenced in
the function, referenced_vars. The index at which a variable is found in the array
is used as a UID for the variable within this function. This data is needed by the
SSA rewriting routines. The pass is located in ‘tree-dfa.cc’ and is described by
pass_referenced_vars.

e Enter static single assignment form

This pass rewrites the function such that it is in SSA form. After this pass, all is_
gimple_reg variables will be referenced by SSA_NAME, and all occurrences of other
variables will be annotated with VDEFS and VUSES; PHI nodes will have been inserted
as necessary for each basic block. This pass is located in ‘tree-ssa.cc’ and is described
by pass_build_ssa.

e Warn for uninitialized variables

This pass scans the function for uses of SSA_NAMEs that are fed by default definition.
For non-parameter variables, such uses are uninitialized. The pass is run twice, before
and after optimization (if turned on). In the first pass we only warn for uses that
are positively uninitialized; in the second pass we warn for uses that are possibly
uninitialized. The pass is located in ‘tree-ssa.cc’ and is defined by pass_early_
warn_uninitialized and pass_late_warn_uninitialized.



142

GNU Compiler Collection (GCC) Internals

Dead code elimination

This pass scans the function for statements without side effects whose result is unused.
It does not do memory life analysis, so any value that is stored in memory is considered
used. The pass is run multiple times throughout the optimization process. It is located
in ‘tree-ssa-dce.cc’ and is described by pass_dce.

Dominator optimizations

This pass performs trivial dominator-based copy and constant propagation, expression
simplification, and jump threading. It is run multiple times throughout the optimiza-
tion process. It is located in ‘tree-ssa-dom.cc’ and is described by pass_dominator.

Forward propagation of single-use variables

This pass attempts to remove redundant computation by substituting variables that are
used once into the expression that uses them and seeing if the result can be simplified.
It is located in ‘tree-ssa-forwprop.cc’ and is described by pass_forwprop.

Copy Renaming

This pass attempts to change the name of compiler temporaries involved in copy oper-
ations such that SSA->normal can coalesce the copy away. When compiler temporaries
are copies of user variables, it also renames the compiler temporary to the user variable
resulting in better use of user symbols. It is located in ‘tree-ssa-copyrename.c’ and
is described by pass_copyrename.

PHI node optimizations

This pass recognizes forms of PHI inputs that can be represented as conditional expres-
sions and rewrites them into straight line code. It is located in ‘tree-ssa-phiopt.cc’
and is described by pass_phiopt.

May-alias optimization

This pass performs a flow sensitive SSA-based points-to analysis. The resulting may-
alias, must-alias, and escape analysis information is used to promote variables from
in-memory addressable objects to non-aliased variables that can be renamed into SSA
form. We also update the VDEF/VUSE memory tags for non-renameable aggregates
so that we get fewer false kills. The pass is located in ‘tree-ssa-alias.cc’ and is
described by pass_may_alias.

Interprocedural points-to information is located in ‘tree-ssa-structalias.cc’ and
described by pass_ipa_pta.

Profiling

This pass instruments the function in order to collect runtime block and value profiling
data. Such data may be fed back into the compiler on a subsequent run so as to
allow optimization based on expected execution frequencies. The pass is located in
‘tree-profile.cc’ and is described by pass_ipa_tree_profile.

Static profile estimation

This pass implements series of heuristics to guess propababilities of branches. The
resulting predictions are turned into edge profile by propagating branches across the
control flow graphs. The pass is located in ‘tree-profile.cc’ and is described by
pass_profile.



Chapter 9: Passes and Files of the Compiler 143

e Lower complex arithmetic

This pass rewrites complex arithmetic operations into their component scalar arith-
metic operations. The pass is located in ‘tree-complex.cc’ and is described by pass_
lower_complex.

e Scalar replacement of aggregates

This pass rewrites suitable non-aliased local aggregate variables into a set of scalar
variables. The resulting scalar variables are rewritten into SSA form, which allows
subsequent optimization passes to do a significantly better job with them. The pass is
located in ‘tree-sra.cc’ and is described by pass_sra.

e Dead store elimination
This pass eliminates stores to memory that are subsequently overwritten by another

store, without any intervening loads. The pass is located in ‘tree-ssa-dse.cc’ and is
described by pass_dse.

e Tail recursion elimination

This pass transforms tail recursion into a loop. It is located in ‘tree-tailcall.cc’
and is described by pass_tail_recursion.

e Forward store motion

This pass sinks stores and assignments down the flowgraph closer to their use point.
The pass is located in ‘tree-ssa-sink.cc’ and is described by pass_sink_code.

e Partial redundancy elimination

This pass eliminates partially redundant computations, as well as performing load
motion. The pass is located in ‘tree-ssa-pre.cc’ and is described by pass_pre.

Just before partial redundancy elimination, if ‘-funsafe-math-optimizations’ is on,
GCC tries to convert divisions to multiplications by the reciprocal. The pass is located
in ‘tree-ssa-math-opts.cc’ and is described by pass_cse_reciprocal.

e Full redundancy elimination

This is a simpler form of PRE that only eliminates redundancies that occur on all
paths. It is located in ‘tree-ssa-pre.cc’ and described by pass_fre.

e Loop optimization

The main driver of the pass is placed in ‘tree-ssa-loop.cc’ and described by pass_
loop.

The optimizations performed by this pass are:

Loop invariant motion. This pass moves only invariants that would be hard to handle
on RTL level (function calls, operations that expand to nontrivial sequences of insns).
With ‘~-funswitch-loops’ it also moves operands of conditions that are invariant out of
the loop, so that we can use just trivial invariantness analysis in loop unswitching. The
pass also includes store motion. The pass is implemented in ‘tree-ssa-loop-im.cc’.

Canonical induction variable creation. This pass creates a simple counter for number
of iterations of the loop and replaces the exit condition of the loop using it, in case
when a complicated analysis is necessary to determine the number of iterations. Later
optimizations then may determine the number easily. The pass is implemented in
‘tree-ssa-loop-ivcanon.cc’.



144

GNU Compiler Collection (GCC) Internals

Induction variable optimizations. This pass performs standard induction variable op-
timizations, including strength reduction, induction variable merging and induction
variable elimination. The pass is implemented in ‘tree-ssa-loop-ivopts.cc’.

Loop unswitching. This pass moves the conditional jumps that are invariant out of the
loops. To achieve this, a duplicate of the loop is created for each possible outcome of
conditional jump(s). The pass is implemented in ‘tree-ssa-loop-unswitch.cc’.

Loop splitting. If a loop contains a conditional statement that is always true for one
part of the iteration space and false for the other this pass splits the loop into two, one
dealing with one side the other only with the other, thereby removing one inner-loop
conditional. The pass is implemented in ‘tree-ssa-loop-split.cc’.

The optimizations also use various utility functions contained in ‘tree-ssa-loop-manip
‘cfgloop.cc’, ‘cfgloopanal.cc’ and ‘cfgloopmanip.cc’.

Vectorization. This pass transforms loops to operate on vector types instead of scalar
types. Data parallelism across loop iterations is exploited to group data elements from
consecutive iterations into a vector and operate on them in parallel. Depending on
available target support the loop is conceptually unrolled by a factor VF (vectorization
factor), which is the number of elements operated upon in parallel in each iteration,
and the VF copies of each scalar operation are fused to form a vector operation.
Additional loop transformations such as peeling and versioning may take place to
align the number of iterations, and to align the memory accesses in the loop. The pass
is implemented in ‘tree-vectorizer.cc’ (the main driver), ‘tree-vect-loop.cc’
and ‘tree-vect-loop-manip.cc’ (loop specific parts and general loop utili-
ties), ‘tree-vect-slp’ (loop-aware SLP functionality), ‘tree-vect-stmts.cc’,
‘tree-vect-data-refs.cc’ and ‘tree-vect-slp-patterns.cc’ containing the SLP
pattern matcher. Analysis of data references is in ‘tree-data-ref.cc’.

SLP Vectorization. This pass performs vectorization of straight-line code. The pass
is implemented in ‘tree-vectorizer.cc’ (the main driver), ‘tree-vect-slp.cc’,
‘tree-vect-stmts.cc’ and ‘tree-vect-data-refs.cc’.

Autoparallelization. This pass splits the loop iteration space to run into several threads.
The pass is implemented in ‘tree-parloops.cc’.

Graphite is a loop transformation framework based on the polyhedral model. Graphite
stands for Gimple Represented as Polyhedra. The internals of this infrastructure are
documented in https://gcc.gnu.org/wiki/Graphite. The passes working on this
representation are implemented in the various ‘graphite-*’ files.

Tree level if-conversion for vectorizer

This pass applies if-conversion to simple loops to help vectorizer. We identify if con-
vertible loops, if-convert statements and merge basic blocks in one big block. The idea
is to present loop in such form so that vectorizer can have one to one mapping between
statements and available vector operations. This pass is located in ‘tree-if-conv.cc’
and is described by pass_if_conversion.

Conditional constant propagation

This pass relaxes a lattice of values in order to identify those that must be constant
even in the presence of conditional branches. The pass is located in ‘tree-ssa-ccp.cc’
and is described by pass_ccp.

.cc’ ]


https://gcc.gnu.org/wiki/Graphite

Chapter 9: Passes and Files of the Compiler 145

A related pass that works on memory loads and stores, and not just register values, is
located in ‘tree-ssa-ccp.cc’ and described by pass_store_ccp.

e Conditional copy propagation

This is similar to constant propagation but the lattice of values is the “copy-of”
relation. It eliminates redundant copies from the code. The pass is located in
‘tree-ssa-copy.cc’ and described by pass_copy_prop.

A related pass that works on memory copies, and not just register copies, is located in
‘tree-ssa-copy.cc’ and described by pass_store_copy_prop.

e Value range propagation

This transformation is similar to constant propagation but instead of propagating sin-
gle constant values, it propagates known value ranges. The implementation is based on
Patterson’s range propagation algorithm (Accurate Static Branch Prediction by Value
Range Propagation, J. R. C. Patterson, PLDI ’95). In contrast to Patterson’s algo-
rithm, this implementation does not propagate branch probabilities nor it uses more
than a single range per SSA name. This means that the current implementation cannot
be used for branch prediction (though adapting it would not be difficult). The pass is
located in ‘tree-vrp.cc’ and is described by pass_vrp.

e Folding built-in functions

This pass simplifies built-in functions, as applicable, with constant arguments or with
inferable string lengths. It is located in ‘tree-ssa-ccp.cc’ and is described by pass_
fold_builtins.

e Split critical edges

This pass identifies critical edges and inserts empty basic blocks such that the edge
is no longer critical. The pass is located in ‘tree-cfg.cc’ and is described by pass_
split_crit_edges.

e Control dependence dead code elimination

This pass is a stronger form of dead code elimination that can eliminate unnecessary
control flow statements. It is located in ‘tree-ssa-dce.cc’ and is described by pass_
cd_dce.

e Tail call elimination

This pass identifies function calls that may be rewritten into jumps. No code trans-
formation is actually applied here, but the data and control flow problem is solved.
The code transformation requires target support, and so is delayed until RTL. In the
meantime CALL_EXPR_TAILCALL is set indicating the possibility. The pass is located in
‘tree-tailcall.cc’ and is described by pass_tail_calls. The RTL transformation
is handled by fixup_tail_calls in ‘calls.cc’.

e Warn for function return without value

For non-void functions, this pass locates return statements that do not specify a value
and issues a warning. Such a statement may have been injected by falling off the end
of the function. This pass is run last so that we have as much time as possible to prove
that the statement is not reachable. It is located in ‘tree-cfg.cc’ and is described by
pass_warn_function_return.



146

GNU Compiler Collection (GCC) Internals

Leave static single assignment form

This pass rewrites the function such that it is in normal form. At the same time, we
eliminate as many single-use temporaries as possible, so the intermediate language is
no longer GIMPLE, but GENERIC. The pass is located in ‘tree-outof-ssa.cc’ and
is described by pass_del_ssa.

Merge PHI nodes that feed into one another

This is part of the CFG cleanup passes. It attempts to join PHI nodes from a
forwarder CFG block into another block with PHI nodes. The pass is located in
‘tree-cfgcleanup.cc’ and is described by pass_merge_phi.

Return value optimization

If a function always returns the same local variable, and that local variable is an
aggregate type, then the variable is replaced with the return value for the function
(i.e., the function’s DECL_RESULT). This is equivalent to the C++ named return
value optimization applied to GIMPLE. The pass is located in ‘tree-nrv.cc’ and is
described by pass_nrv.

Return slot optimization

If a function returns a memory object and is called as var = foo(), this pass tries to
change the call so that the address of var is sent to the caller to avoid an extra memory
copy. This pass is located in tree-nrv.cc and is described by pass_return_slot.
Optimize calls to __builtin_object_size

This is a propagation pass similar to CCP that tries to remove calls to __builtin_
object_size when the size of the object can be computed at compile-time. This pass
is located in ‘tree-object-size.cc’ and is described by pass_object_sizes.

Loop invariant motion

This pass removes expensive loop-invariant computations out of loops. The pass is
located in ‘tree-ssa-loop.cc’ and described by pass_lim.

Loop nest optimizations

This is a family of loop transformations that works on loop nests. It includes loop
interchange, scaling, skewing and reversal and they are all geared to the optimiza-
tion of data locality in array traversals and the removal of dependencies that hamper

optimizations such as loop parallelization and vectorization. The pass is located in
‘tree-loop-linear.c’ and described by pass_linear_transform.

Removal of empty loops

This pass removes loops with no code in them. The pass is located in
‘tree-ssa-loop-ivcanon.cc’ and described by pass_empty_loop.

Unrolling of small loops

This pass completely unrolls loops with few iterations. The pass is located in
‘tree-ssa-loop-ivcanon.cc’ and described by pass_complete_unroll.

Predictive commoning
This pass makes the code reuse the computations from the previous iterations of the
loops, especially loads and stores to memory. It does so by storing the values of these

computations to a bank of temporary variables that are rotated at the end of loop. To
avoid the need for this rotation, the loop is then unrolled and the copies of the loop



Chapter 9: Passes and Files of the Compiler 147

body are rewritten to use the appropriate version of the temporary variable. This pass
is located in ‘tree-predcom.cc’ and described by pass_predcom.

e Array prefetching

This pass issues prefetch instructions for array references inside loops. The pass is
located in ‘tree-ssa-loop-prefetch.cc’ and described by pass_loop_prefetch.

e Reassociation

This pass rewrites arithmetic expressions to enable optimizations that operate
on them, like redundancy elimination and vectorization. The pass is located in
‘tree-ssa-reassoc.cc’ and described by pass_reassoc.

e Optimization of stdarg functions

This pass tries to avoid the saving of register arguments into the stack on entry to
stdarg functions. If the function doesn’t use any va_start macros, no registers need
to be saved. If va_start macros are used, the va_list variables don’t escape the
function, it is only necessary to save registers that will be used in va_arg macros.
For instance, if va_arg is only used with integral types in the function, floating point
registers don’t need to be saved. This pass is located in tree-stdarg. cc and described
by pass_stdarg.

9.6 RTL passes

The following briefly describes the RTL generation and optimization passes that are run
after the Tree optimization passes.

e RTL generation

The source files for RTL generation include ‘stmt.cc’, ‘calls.cc’, ‘expr.cc’,
‘explow.cc’, ‘expmed.cc’, ‘function.cc’, ‘optabs.cc’ and ‘emit-rtl.cc’. Also, the
file ‘insn-emit.cc’, generated from the machine description by the program genemit,
is used in this pass. The header file ‘expr.h’ is used for communication within this
pass.

The header files ‘insn-flags.h’ and ‘insn-codes.h’, generated from the machine
description by the programs genflags and gencodes, tell this pass which standard
names are available for use and which patterns correspond to them.

e Generation of exception landing pads
This pass generates the glue that handles communication between the exception han-
dling library routines and the exception handlers within the function. Entry points in
the function that are invoked by the exception handling library are called landing pads.
The code for this pass is located in ‘except.cc’.

e Control flow graph cleanup
This pass removes unreachable code, simplifies jumps to next, jumps to jump, jumps
across jumps, etc. The pass is run multiple times. For historical reasons, it is occasion-
ally referred to as the “jump optimization pass”. The bulk of the code for this pass is
in ‘cfgcleanup.cc’, and there are support routines in ‘cfgrtl.cc’ and ‘jump.cc’.

e Forward propagation of single-def values

This pass attempts to remove redundant computation by substituting variables that
come from a single definition, and seeing if the result can be simplified. It performs copy



148

GNU Compiler Collection (GCC) Internals

propagation and addressing mode selection. The pass is run twice, with values being
propagated into loops only on the second run. The code is located in ‘fwprop.cc’.

Common subexpression elimination

This pass removes redundant computation within basic blocks, and optimizes address-
ing modes based on cost. The pass is run twice. The code for this pass is located in
‘cse.cc’.

Global common subexpression elimination

This pass performs two different types of GCSE depending on whether you are opti-
mizing for size or not (LCM based GCSE tends to increase code size for a gain in speed,
while Morel-Renvoise based GCSE does not). When optimizing for size, GCSE is done
using Morel-Renvoise Partial Redundancy Elimination, with the exception that it does
not try to move invariants out of loops—that is left to the loop optimization pass. If
MR PRE GCSE is done, code hoisting (aka unification) is also done, as well as load
motion. If you are optimizing for speed, LCM (lazy code motion) based GCSE is done.
LCM is based on the work of Knoop, Ruthing, and Steffen. LCM based GCSE also does
loop invariant code motion. We also perform load and store motion when optimizing
for speed. Regardless of which type of GCSE is used, the GCSE pass also performs
global constant and copy propagation. The source file for this pass is ‘gcse.cc’, and
the LCM routines are in ‘lcm.cc’.

Loop optimization

This pass performs several loop related optimizations. The source files
‘cfgloopanal.cc’ and ‘cfgloopmanip.cc’ contain generic loop analysis and
manipulation code. Initialization and finalization of loop structures is han-
dled by ‘loop-init.cc’. A loop invariant motion pass is implemented in
‘loop-invariant.cc’. Basic block level optimizations—unrolling, and peeling loops—
are implemented in ‘loop-unroll.cc’. Replacing of the exit condition of loops by
special machine-dependent instructions is handled by ‘loop-doloop.cc’.

Jump bypassing

This pass is an aggressive form of GCSE that transforms the control flow graph of a
function by propagating constants into conditional branch instructions. The source file
for this pass is ‘gcse.cc’.

If conversion

This pass attempts to replace conditional branches and surrounding assignments with
arithmetic, boolean value producing comparison instructions, and conditional move
instructions. In the very last invocation after reload/LRA, it will generate predicated
instructions when supported by the target. The code is located in ‘ifcvt.cc’.

Web construction

This pass splits independent uses of each pseudo-register. This can improve effect of
the other transformation, such as CSE or register allocation. The code for this pass is
located in ‘web.cc’.

Instruction combination

This pass attempts to combine groups of two or three instructions that are related by
data flow into single instructions. It combines the RTL expressions for the instructions



Chapter 9: Passes and Files of the Compiler 149

by substitution, simplifies the result using algebra, and then attempts to match the
result against the machine description. The code is located in ‘combine.cc’.

e Mode switching optimization
This pass looks for instructions that require the processor to be in a specific “mode”
and minimizes the number of mode changes required to satisfy all users. What these
modes are, and what they apply to are completely target-specific. The code for this
pass is located in ‘mode-switching.cc’.

e Modulo scheduling

This pass looks at innermost loops and reorders their instructions by overlapping differ-
ent iterations. Modulo scheduling is performed immediately before instruction schedul-
ing. The code for this pass is located in ‘modulo-sched.cc’.

e Instruction scheduling

This pass looks for instructions whose output will not be available by the time that
it is used in subsequent instructions. Memory loads and floating point instructions
often have this behavior on RISC machines. It re-orders instructions within a basic
block to try to separate the definition and use of items that otherwise would cause
pipeline stalls. This pass is performed twice, before and after register allocation. The
code for this pass is located in ‘haifa-sched.cc’, ‘sched-deps.cc’, ‘sched-ebb.cc’,
‘sched-rgn.cc’ and ‘sched-vis.c’.

e Register allocation

These passes make sure that all occurrences of pseudo registers are eliminated, either
by allocating them to a hard register, replacing them by an equivalent expression (e.g.
a constant) or by placing them on the stack. This is done in several subpasses:

e The integrated register allocator (IRA). It is called integrated because coalescing,
register live range splitting, and hard register preferencing are done on-the-fly
during coloring. It also has better integration with the reload/LRA pass. Pseudo-
registers spilled by the allocator or the reload/LRA have still a chance to get
hard-registers if the reload/LRA evicts some pseudo-registers from hard-registers.
The allocator helps to choose better pseudos for spilling based on their live ranges
and to coalesce stack slots allocated for the spilled pseudo-registers. IRA is a
regional register allocator which is transformed into Chaitin-Briggs allocator if
there is one region. By default, IRA chooses regions using register pressure but
the user can force it to use one region or regions corresponding to all loops.
Source files of the allocator are ‘ira.cc’, ‘ira-build.cc’, ‘ira-costs.cc’,
‘ira-conflicts.cc’, ‘dra-color.cc’, ‘ira-emit.cc’, ‘ira-lives’, plus header
files ‘ira.h’ and ‘ira-int.h’ used for the communication between the allocator
and the rest of the compiler and between the IRA files.

e Reloading. This pass renumbers pseudo registers with the hardware registers num-
bers they were allocated. Pseudo registers that did not get hard registers are re-
placed with stack slots. Then it finds instructions that are invalid because a value
has failed to end up in a register, or has ended up in a register of the wrong kind.
It fixes up these instructions by reloading the problematical values temporarily
into registers. Additional instructions are generated to do the copying.

The reload pass also optionally eliminates the frame pointer and inserts instruc-
tions to save and restore call-clobbered registers around calls.



150

GNU Compiler Collection (GCC) Internals

Source files are ‘reload.cc’ and ‘reloadl.cc’, plus the header ‘reload.h’ used
for communication between them.

e This pass is a modern replacement of the reload pass. Source files are
‘lra.cc’, ‘lra-assign.c’, ‘lra-coalesce.cc’, ‘lra-constraints.cc’,
‘lra-eliminations.cc’, ‘lra-lives.cc’, ‘lra-remat.cc’, ‘lra-spills.cc’,

the header ‘lra-int.h’ used for communication between them, and the header
‘lra.h’ used for communication between LRA and the rest of compiler.

Unlike the reload pass, intermediate LRA decisions are reflected in RTL as much as
possible. This reduces the number of target-dependent macros and hooks, leaving
instruction constraints as the primary source of control.

LRA is run on targets for which TARGET_LRA_P returns true.
Basic block reordering

This pass implements profile guided code positioning. If profile information is not avail-
able, various types of static analysis are performed to make the predictions normally
coming from the profile feedback (IE execution frequency, branch probability, etc). It
is implemented in the file ‘bb-reorder.cc’, and the various prediction routines are in
‘predict.cc’.

Variable tracking

This pass computes where the variables are stored at each position in code and gener-
ates notes describing the variable locations to RTL code. The location lists are then
generated according to these notes to debug information if the debugging information
format supports location lists. The code is located in ‘var-tracking.cc’.

Delayed branch scheduling

This optional pass attempts to find instructions that can go into the delay slots of other
instructions, usually jumps and calls. The code for this pass is located in ‘reorg.cc’.

Branch shortening

On many RISC machines, branch instructions have a limited range. Thus, longer
sequences of instructions must be used for long branches. In this pass, the compiler
figures out what how far each instruction will be from each other instruction, and
therefore whether the usual instructions, or the longer sequences, must be used for
each branch. The code for this pass is located in ‘final.cc’.

Register-to-stack conversion
Conversion from usage of some hard registers to usage of a register stack may be done

at this point. Currently, this is supported only for the floating-point registers of the
Intel 80387 coprocessor. The code for this pass is located in ‘reg-stack.cc’.

Final

This pass outputs the assembler code for the function. The source files are ‘final.cc’
plus ‘insn-output.cc’; the latter is generated automatically from the machine descrip-
tion by the tool ‘genoutput’. The header file ‘conditions.h’is used for communication
between these files.

Debugging information output

This is run after final because it must output the stack slot offsets for pseudo reg-
isters that did not get hard registers. Source files are ‘dbxout.cc’ for DBX symbol



Chapter 9: Passes and Files of the Compiler 151

table format, ‘dwarfout.c’ for DWARF symbol table format, files ‘dwarf2out.cc’ and
‘dwarf2asm.cc’ for DWARF2 symbol table format, and ‘vmsdbgout.cc’ for VMS de-
bug symbol table format.

9.7 Optimization info

This section is describes dump infrastructure which is common to both pass dumps as well
as optimization dumps. The goal for this infrastructure is to provide both gcc developers
and users detailed information about various compiler transformations and optimizations.

9.7.1 Dump setup

A dump_manager class is defined in ‘dumpfile.h’. Various passes register dumping pass-
specific information via dump_register in ‘passes.cc’. During the registration, an opti-
mization pass can select its optimization group (see Section 9.7.2 [Optimization groups],
page 151). After that optimization information corresponding to the entire group (presum-
ably from multiple passes) can be output via command-line switches. Note that if a pass
does not fit into any of the pre-defined groups, it can select OPTGROUP_NONE.

Note that in general, a pass need not know its dump output file name, whether certain
flags are enabled, etc. However, for legacy reasons, passes could also call dump_begin which
returns a stream in case the particular pass has optimization dumps enabled. A pass could
call dump_end when the dump has ended. These methods should go away once all the passes
are converted to use the new dump infrastructure.

The recommended way to setup the dump output is via dump_start and dump_end.

9.7.2 Optimization groups
The optimization passes are grouped into several categories. Currently defined categories
in ‘dumpfile.h’ are

OPTGROUP_IPA
IPA optimization passes. Enabled by ‘-ipa’

OPTGROUP_LOOQP
Loop optimization passes. Enabled by ‘-loop’.

OPTGROUP_INLINE
Inlining passes. Enabled by ‘-inline’.

OPTGROUP_OMP
OMP (Offloading and Multi Processing) passes. Enabled by ‘-omp’.

OPTGROUP_VEC
Vectorization passes. Enabled by ‘-vec’.

OPTGROUP_OTHER
All other optimization passes which do not fall into one of the above.

OPTGROUP_ALL
All optimization passes. Enabled by ‘-optall’.

By using groups a user could selectively enable optimization information only for a group
of passes. By default, the optimization information for all the passes is dumped.



152 GNU Compiler Collection (GCC) Internals

9.7.3 Dump files and streams

There are two separate output streams available for outputting optimization information
from passes. Note that both these streams accept stderr and stdout as valid streams and
thus it is possible to dump output to standard output or error. This is specially handy for
outputting all available information in a single file by redirecting stderr.

pstream  This stream is for pass-specific dump output. For example,
‘~fdump-tree-vect=foo.v’ dumps tree vectorization pass output into
the given file name ‘foo.v’. If the file name is not provided, the default file
name is based on the source file and pass number. Note that one could also
use special file names stdout and stderr for dumping to standard output and
standard error respectively.

alt_stream
This steam is used for printing optimization specific output in response to the
‘~fopt-info’. Again a file name can be given. If the file name is not given, it
defaults to stderr.

9.7.4 Dump output verbosity
The dump verbosity has the following options
‘optimized’
Print information when an optimization is successfully applied. It is up to a

pass to decide which information is relevant. For example, the vectorizer passes
print the source location of loops which got successfully vectorized.

‘missed’  Print information about missed optimizations. Individual passes control which
information to include in the output. For example,
gcc -02 -ftree-vectorize -fopt-info-vec-missed
will print information about missed optimization opportunities from vectoriza-
tion passes on stderr.

‘note’ Print verbose information about optimizations, such as certain transformations,
more detailed messages about decisions etc.

‘all’ Print detailed optimization information. This includes optimized, missed, and
note.

9.7.5 Dump types

dump_printf

This is a generic method for doing formatted output. It takes an additional
argument, dump_kind which signifies the type of dump. This method outputs
information only when the dumps are enabled for this particular dump_kind.
Note that the caller doesn’t need to know if the particular dump is enabled
or not, or even the file name. The caller only needs to decide which dump
output information is relevant, and under what conditions. This determines
the associated flags.

Consider the following example from ‘loop-unroll.cc’ where an informative
message about a loop (along with its location) is printed when any of the
following flags is enabled



Chapter 9: Passes and Files of the Compiler 153

— optimization messages
— RTL dumps
— detailed dumps

int report_flags = MSG_OPTIMIZED_LOCATIONS | TDF_RTL | TDF_DETAILS;]
dump_printf_loc (report_flags, insn,
"loop turned into non-loop; it never loops.\n");]}

dump_basic_block
Output basic block.

dump_generic_expr
Output generic expression.

dump_gimple_stmt
Output gimple statement.

Note that the above methods also have variants prefixed with _loc, such as
dump_printf_loc, which are similar except they also output the source location
information. The _loc variants take a const dump_location_t &. This class
can be constructed from a gimple * or from a rtx_insn *, and so callers can
pass a gimple * or a rtx_insn * as the _loc argument. The dump_location_t
constructor will extract the source location from the statement or instruction,
along with the profile count, and the location in GCC’s own source code (or
the plugin) from which the dump call was emitted. Only the source location
is currently used. There is also a dump_user_location_t class, capturing the
source location and profile count, but not the dump emission location, so that
locations in the user’s code can be passed around. This can also be constructed
from a gimple * and from a rtx_insn *, and it too can be passed as the _loc
argument.

9.7.6 Dump examples
gcc -03 -fopt-info-missed=missed.all
outputs missed optimization report from all the passes into ‘missed.all’.
As another example,
gcc -03 -fopt-info-inline-optimized-missed=inline.txt
will output information about missed optimizations as well as optimized locations from
all the inlining passes into ‘inline.txt’.

If the filename is provided, then the dumps from all the applicable optimizations are
concatenated into the ‘filename’. Otherwise the dump is output onto ‘stderr’. If options
is omitted, it defaults to ‘optimized-optall’, which means dump all information about
successful optimizations from all the passes. In the following example, the optimization
information is output on to ‘stderr’.

gcc -03 -fopt-info

Note that ‘~fopt-info-vec-missed’ behaves the same as ‘-fopt-info-missed-vec’.
The order of the optimization group names and message types listed after ‘~fopt-info’
does not matter.

As another example, consider



154 GNU Compiler Collection (GCC) Internals

gcc —fopt-info-vec-missed=vec.miss -fopt-info-loop-optimized=loop.opt
Here the two output file names ‘vec.miss’ and ‘loop.opt’ are in conflict since only one
output file is allowed. In this case, only the first option takes effect and the subsequent
options are ignored. Thus only the ‘vec.miss’ is produced which containts dumps from the
vectorizer about missed opportunities.



Chapter 10: Sizes and offsets as runtime invariants 155

10 Sizes and offsets as runtime invariants

GCC allows the size of a hardware register to be a runtime invariant rather than a compile-
time constant. This in turn means that various sizes and offsets must also be runtime
invariants rather than compile-time constants, such as:

e the size of a general machine_mode (see Section 14.6 [Machine Modes|, page 279);

e the size of a spill slot;

e the offset of something within a stack frame;

e the number of elements in a vector;

e the size and offset of a mem rtx (see Section 14.8 [Regs and Memory]|, page 290); and
e the byte offset in a subreg rtx (see Section 14.8 [Regs and Memory]|, page 290).

The motivating example is the Arm SVE ISA, whose vector registers can be any multiple
of 128 bits between 128 and 2048 inclusive. The compiler normally produces code that
works for all SVE register sizes, with the actual size only being known at runtime.

GCC(C’s main representation of such runtime invariants is the poly_int class. This chapter
describes what poly_int does, lists the available operations, and gives some general usage
guidelines.

10.1 Overview of poly_int

We define indeterminates xI, ..., xn whose values are only known at runtime and use
polynomials of the form:
cO+ cl*xx1+ ...+ cn * xn
to represent a size or offset whose value might depend on some of these indeterminates.
The coefficients c0, ..., cn are always known at compile time, with the cO term being the
“constant” part that does not depend on any runtime value.

GCC uses the poly_int class to represent these coeflicients. The class has two template
parameters: the first specifies the number of coefficients (n + 1) and the second specifies
the type of the coefficients. For example, ‘poly_int<2, unsigned short>’ represents a
polynomial with two coefficients (and thus one indeterminate), with each coefficient having
type unsigned short. When n is 0, the class degenerates to a single compile-time constant

c0.

The number of coefficients needed for compilation is a fixed property of each target and
is specified by the configuration macro NUM_POLY_INT_COEFFS. The default value is 1, since
most targets do not have such runtime invariants. Targets that need a different value should
#define the macro in their ‘cpu-modes.def’ file. See Section 6.3.9 [Back End|, page 75.

poly_int makes the simplifying requirement that each indeterminate must be a nonneg-
ative integer. An indeterminate value of 0 should usually represent the minimum possible
runtime value, with c0 specifying the value in that case.

For example, when targetting the Arm SVE ISA, the single indeterminate represents the
number of 128-bit blocks in a vector beyond the minimum length of 128 bits. Thus the
number of 64-bit doublewords in a vector is 2 + 2 * x1. If an aggregate has a single SVE
vector and 16 additional bytes, its total size is 32 + 16 * xI bytes.

The header file ‘poly-int-types.h’ provides typedefs for the most common forms of
poly_int, all having NUM_POLY_INT_COEFFS coefficients:



156 GNU Compiler Collection (GCC) Internals

poly_uinti16
a ‘poly_int’ with unsigned short coefficients.

poly_int64
a ‘poly_int’ with HOST_WIDE_INT coefficients.

poly_uint64
a ‘poly_int’ with unsigned HOST_WIDE_INT coefficients.

poly_offset_int
a ‘poly_int’ with offset_int coeflicients.

poly_wide_int
a ‘poly_int’ with wide_int coefficients.

poly_widest_int
a ‘poly_int’ with widest_int coefficients.

Since the main purpose of poly_int is to represent sizes and offsets, the last two typedefs
are only rarely used.

10.2 Consequences of using poly_int
The two main consequences of using polynomial sizes and offsets are that:

e there is no total ordering between the values at compile time, and

e some operations might yield results that cannot be expressed as a poly_int.

For example, if x is a runtime invariant, we cannot tell at compile time whether:

3+ 4x <=1 + bx
since the condition is false when x <= 1 and true when x >= 2.

Similarly, poly_int cannot represent the result of:

(3 +4x) * (1 + 5x)

since it cannot (and in practice does not need to) store powers greater than one. It also
cannot represent the result of:

(3 + 4x) / (1 + bx)
The following sections describe how we deal with these restrictions.

As described earlier, a poly_int<1, T> has no indeterminates and so degenerates to a
compile-time constant of type T. It would be possible in that case to do all normal arithmetic
on the T, and to compare the T using the normal C++ operators. We deliberately prevent
target-independent code from doing this, since the compiler needs to support other poly_
int<n, T> as well, regardless of the current target’s NUM_POLY_INT_COEFFS.

However, it would be very artificial to force target-specific code to follow these restrictions
if the target has no runtime indeterminates. There is therefore an implicit conversion from
poly_int<1, T> to T when compiling target-specific translation units.



Chapter 10: Sizes and offsets as runtime invariants 157

10.3 Comparisons involving poly_int

In general we need to compare sizes and offsets in two situations: those in which the values
need to be ordered, and those in which the values can be unordered. More loosely, the
distinction is often between values that have a definite link (usually because they refer to
the same underlying register or memory location) and values that have no definite link.
An example of the former is the relationship between the inner and outer sizes of a subreg,
where we must know at compile time whether the subreg is paradoxical, partial, or complete.
An example of the latter is alias analysis: we might want to check whether two arbitrary
memory references overlap.

Referring back to the examples in the previous section, it makes sense to ask whether a
memory reference of size ‘3 + 4x’ overlaps one of size ‘1 + 5x’, but it does not make sense
to have a subreg in which the outer mode has ‘3 + 4x” bytes and the inner mode has ‘1 +
5x" bytes (or vice versa). Such subregs are always invalid and should trigger an internal
compiler error if formed.

The underlying operators are the same in both cases, but the distinction affects how they
are used.

10.3.1 Comparison functions for poly_int

poly_int provides the following routines for checking whether a particular condition “may
be” (might be) true:

maybe_lt maybe_le maybe_eq maybe_ge maybe_gt
maybe_ne

The functions have their natural meaning;:

‘maybe_lt(a, b)’
Return true if a might be less than b.

‘maybe_le(a, b)’
Return true if a might be less than or equal to b.

‘maybe_eq(a, b)’
Return true if a might be equal to b.

‘maybe_ne(a, b)’
Return true if a might not be equal to b.

‘maybe_ge(a, b)’
Return true if a might be greater than or equal to b.

‘maybe_gt(a, b)’
Return true if a might be greater than b.

For readability, poly_int also provides “known” inverses of these functions:

known_1t (a, b) == !maybe_ge (a, b)
known_le (a, b) == !maybe_gt (a, b)
known_eq (a, b) == !maybe_ne (a, b)
known_ge (a, b) == !maybe_lt (a, b)
known_gt (a, b) == !maybe_le (a, b)

known_ne (a, b) == !maybe_eq (a, b)



158

GNU Compiler Collection (GCC) Internals

10.3.2 Properties of the poly_int comparisons

All “maybe” relations except maybe_ne are transitive, so for example:

maybe_1t (a, b) && maybe_lt (b, c) implies maybe_lt (a, c¢)

for all a, b and c. maybe_1t, maybe_gt and maybe_ne are irreflexive, so for example:

Imaybe_1t (a, a)

is true for all a.

maybe_le

(a,

is true for all a.

maybe_eq
maybe_ne

(a,
(a,

maybe_le, maybe_eq and maybe_ge are reflexive, so for example:

a)

maybe_eq and maybe_ne are symmetric, so:

b) == maybe_eq (b, a)
b) == maybe_ne

for all a and b. In addition:

maybe_le
maybe_ge
maybe_1t
maybe_le

However:

maybe_le
maybe_ge

(a,
(a,
(a,
(a,

(a,
(a,

b)
b)
b)
b)

b)
b)

&&
&&

maybe_1t
maybe_gt
maybe_gt
maybe_ge

maybe_le
maybe_ge

(b, a)

(a, b)
(a, b)
(b, a)
(b, a

(b, a)
(b, a)

|| maybe_eq (a, b)
|| maybe_eq (a, b)

does not imply !maybe_ne (a, b) [== known_eq (a, b)]
does not imply !'maybe_ne (a, b) [== known_eq (a, b)]

One example is again ‘a==3+4x" and ‘b==1+ 5%, where ‘maybe_le (a, b)’,
‘maybe_ge (a, b)’ and ‘maybe_ne (a, b)’ all hold. maybe_le and maybe_ge are therefore
not antisymetric and do not form a partial order.

From the above, it follows that:

o All “known” relations except known_ne are transitive.

e known_lt, known_ne and known_gt are irreflexive.

e known_le, known_eq and known_ge are reflexive.

Also:

known_1t
known_1le
known_1t
known_gt
known_le
known_ge

(a,
(a,
(a,
(a,
(a,
(a,

b)
b)
b)
b)
b)
b)

known_gt
known_ge

(b, a)
(b, a)

implies 'known_lt (b, a) [asymmetry]

implies 'known_gt (b, a)

&& known_le (b, a) == known_eq (a, b) [== !maybe_ne (a, b)]
&& known_ge (b, a) == known_eq (a, b) [== !maybe_ne (a, b)]

known_le and known_ge are therefore antisymmetric and are partial orders. However:

known_le (a, b) does not imply known_lt (a, b) || known_eq (a, b)
known_ge (a, b) does not imply known_gt (a, b) || known_eq (a, b)

For example, ‘known_le (4, 4 + 4x)’ holds because the runtime indeterminate x is a
nonnegative integer, but neither known_1t (4, 4 + 4x) nor known_eq (4, 4 + 4x) hold.

10.3.3 Comparing potentially-unordered poly_ints

In cases where there is no definite link between two poly_ints, we can usually make a
conservatively-correct assumption. For example, the conservative assumption for alias anal-
ysis is that two references might alias.

One way of checking whether [beginl, endl) might overlap [begin2, end2) using the
poly_int comparisons is:



Chapter 10: Sizes and offsets as runtime invariants 159

maybe_gt (endl, begin2) && maybe_gt (end2, beginl)
and another (equivalent) way is:
! (known_le (endl, begin2) || known_le (end2, beginl))
However, in this particular example, it is better to use the range helper functions instead.
See Section 10.3.6 [Range checks on poly_ints], page 160.

10.3.4 Comparing ordered poly_ints

In cases where there is a definite link between two poly_ints, such as the outer and inner
sizes of subregs, we usually require the sizes to be ordered by the known_le partial order.
poly_int provides the following utility functions for ordered values:

‘ordered_p (a, b)’
Return true if a and b are ordered by the known_le partial order.

‘ordered_min (a, b)’
Assert that a and b are ordered by known_le and return the minimum of the
two. When using this function, please add a comment explaining why the values
are known to be ordered.

‘ordered_max (a, b)’
Assert that a and b are ordered by known_le and return the maximum of the
two. When using this function, please add a comment explaining why the values
are known to be ordered.
For example, if a subreg has an outer mode of size outer and an inner mode of size inner:
e the subreg is complete if known_eq (inner, outer)
e otherwise, the subreg is paradoxical if known_le (inner, outer)
e otherwise, the subreg is partial if known_le (outer, inner)
e otherwise, the subreg is ill-formed
Thus the subreg is only valid if ‘ordered_p (outer, inner)’is true. If this condition is
already known to be true then:
e the subreg is complete if known_eq (inner, outer)
e the subreg is paradoxical if maybe_lt (inner, outer)

e the subreg is partial if maybe_lt (outer, inner)

with the three conditions being mutually exclusive.

Code that checks whether a subreg is valid would therefore generally check whether
ordered_p holds (in addition to whatever other checks are required for subreg validity).
Code that is dealing with existing subregs can assert that ordered_p holds and use either
of the classifications above.

10.3.5 Checking for a poly_int marker value

It is sometimes useful to have a special “marker value” that is not meant to be taken
literally. For example, some code uses a size of -1 to represent an unknown size, rather than
having to carry around a separate boolean to say whether the size is known.

The best way of checking whether something is a marker value is known_eq. Conversely
the best way of checking whether something is not a marker value is maybe_ne.



160 GNU Compiler Collection (GCC) Internals

Thus in the size example just mentioned, ‘known_eq (size, -1)’ would check for an
unknown size and ‘maybe_ne (size, -1)’ would check for a known size.

10.3.6 Range checks on poly_ints

As well as the core comparisons (see Section 10.3.1 [Comparison functions for poly_int],
page 157), poly_int provides utilities for various kinds of range check. In each case the
range is represented by a start position and a size rather than a start position and an end
position; this is because the former is used much more often than the latter in GCC. Also,
the sizes can be -1 (or all ones for unsigned sizes) to indicate a range with a known start
position but an unknown size. All other sizes must be nonnegative. A range of size 0 does
not contain anything or overlap anything.

‘known_size_p (size)’
Return true if size represents a known range size, false if it is -1 or all ones (for
signed and unsigned types respectively).

‘ranges_maybe_overlap_p (posl, sizel, pos2, size2)’
Return true if the range described by posl and sizel might overlap the range
described by pos2 and size2 (in other words, return true if we cannot prove
that the ranges are disjoint).

‘ranges_known_overlap_p (posl, sizel, pos2, size2)’
Return true if the range described by posl and sizel is known to overlap the
range described by pos2 and size2.

‘known_subrange_p (pos1, sizel, pos2, size2)’
Return true if the range described by posl and sizel is known to be contained
in the range described by pos2 and size2.

‘maybe_in_range_p (value, pos, size)’
Return true if value might be in the range described by pos and size (in other
words, return true if we cannot prove that value is outside that range).

‘known_in_range_p (value, pos, size)’
Return true if value is known to be in the range described by pos and size.

‘endpoint_representable_p (pos, size)’
Return true if the range described by pos and size is open-ended or if the
endpoint (pos + size) is representable in the same type as pos and size. The
function returns false if adding size to pos makes conceptual sense but could
overflow.

There is also a poly_int version of the IN_RANGE_P macro:

‘coeffs_in_range_p (x, lower, upper)’
Return true if every coefficient of x is in the inclusive range [lower, upper].
This function can be useful when testing whether an operation would cause the
values of coefficients to overflow.

Note that the function does not indicate whether x itself is in the given range.
x can be either a constant or a poly_int.



Chapter 10: Sizes and offsets as runtime invariants 161

10.3.7 Sorting poly_ints
poly_int provides the following routine for sorting:

‘compare_sizes_for_sort (a, b)’
Compare a and b in reverse lexicographical order (that is, compare the highest-
indexed coefficients first). This can be useful when sorting data structures,
since it has the effect of separating constant and non-constant values. If all
values are nonnegative, the constant values come first.
Note that the values do not necessarily end up in numerical order. For example,

‘1 + 1x’ would come after ‘100’ in the sort order, but may well be less than ‘100’
at run time.

10.4 Arithmetic on poly_ints

Addition, subtraction, negation and bit inversion all work normally for poly_ints. Mul-
tiplication by a constant multiplier and left shifting by a constant shift amount also work
normally. General multiplication of two poly_ints is not supported and is not useful in
practice.

Other operations are only conditionally supported: the operation might succeed or might
fail, depending on the inputs.

This section describes both types of operation.

10.4.1 Using poly_int with C++ arithmetic operators

The following C++ expressions are supported, where pl and p2 are poly_ints and where
cl and c2 are scalars:
_pl

pl + p2
pl + c2
cl + p2

pl - p2
pl - c2
cl - p2

cl * p2
pl * c2

pl << ¢2

pl += p2
pl += c2

= p2
pl —= c2

pl *= c2
pl <<= c2
These arithmetic operations handle integer ranks in a similar way to C++. The main

difference is that every coefficient narrower than HOST_WIDE_INT promotes to HOST_WIDE_
INT, whereas in C++ everything narrower than int promotes to int. For example:



162

poly_uinti16
unsigned int

poly_int64
poly_int32
uint64

poly_offset_int

offset_int

+
+
+
+
+
+
+

int
poly_uinti16
int
poly_uint64
poly_int64
int32
poly_uinti16

GNU Compiler Collection (GCC) Internals

poly_int64
poly_int64
poly_int64
poly_uint64
poly_uint64
poly_offset_int
poly_offset_int

In the first two examples, both coefficients are narrower than HOST_WIDE_INT, so the
result has coefficients of type HOST_WIDE_INT. In the other examples, the coefficient with
the highest rank “wins”.

If one of the operands is wide_int or poly_wide_int, the rules are the same as for
wide_int arithmetic.

10.4.2 wi arithmetic on poly_ints

As well as the C++ operators, poly_int supports the following wi routines:

wi::neg (p1, &overflow)
radd
radd
radd
radd

wi:
wi:
wi:
wi:

(p1,
(p1,
(ct1,
(p1,

p2)
c2)
pl)
p2, sign, &overflow)
:sub
:sub
:sub
:sub

wi:
wi:
wi:
wi:

(p1,
(p1,
(c1,
(p1,

p2)
c2)
pl)
p2, sign, &overflow)
:mul
:mul
:mul

wi:
wi:
wi:

c2)
p1)
c2, sign, &overflow)

(p1,
(ct1,
(p1,

wi::1lshift (p1, c2)

These routines just check whether overflow occurs on any individual coefficient; it is not
possible to know at compile time whether the final runtime value would overflow.

10.4.3 Division of poly_ints

Division of poly_ints is possible for certain inputs. The functions for division return true
if the operation is possible and in most cases return the results by pointer. The routines
are:

‘multiple_p (a, b)’

‘multiple_p (a, b, &quotient)’
Return true if a is an exact multiple of b, storing the result in quotient if so.
There are overloads for various combinations of polynomial and constant a, b
and quotient.

‘constant_multiple_p (a, b)’
‘constant_multiple_p (a, b, &quotient)’
Like multiple_p, but also test whether the multiple is a compile-time constant.



Chapter 10: Sizes and offsets as runtime invariants 163

‘can_div_trunc_p (a, b, &quotient)’

‘can_div_trunc_p (a, b, &quotient, &remainder)’
Return true if we can calculate ‘trunc (a / b)’ at compile time, storing the
result in quotient and remainder if so.

‘can_div_away_from_zero_p (a, b, &quotient)’
Return true if we can calculate ‘a / b’ at compile time, rounding away from
zero. Store the result in quotient if so.

Note that this is true if and only if can_div_trunc_p is true. The only difference
is in the rounding of the result.

There is also an asserting form of division:

‘exact_div (a, b)’
Assert that a is a multiple of b and return ‘a / b’. The result is a poly_int if
ais a poly_int.

10.4.4 Other poly_int arithmetic

There are tentative routines for other operations besides division:

‘can_ior_p (a, b, &result)’
Return true if we can calculate ‘a | b’ at compile time, storing the result in
result if so.

Also, ANDs with a value ‘(1 << y) - 1’ or its inverse can be treated as alignment opera-
tions. See Section 10.5 [Alignment of poly_ints], page 163.

In addition, the following miscellaneous routines are available:

‘coeff_gcd (a)’
Return the greatest common divisor of all nonzero coefficients in a, or zero if a
is known to be zero.

‘common_multiple (a, b)’
Return a value that is a multiple of both a and b, where one value is a poly_int
and the other is a scalar. The result will be the least common multiple for some
indeterminate values but not necessarily for all.

‘force_common_multiple (a, b)’
Return a value that is a multiple of both poly_int a and poly_int b, asserting
that such a value exists. The result will be the least common multiple for some
indeterminate values but not necessarily for all.

When using this routine, please add a comment explaining why the assertion is
known to hold.

Please add any other operations that you find to be useful.

10.5 Alignment of poly_ints

poly_int provides various routines for aligning values and for querying misalignments. In
each case the alignment must be a power of 2.



164 GNU Compiler Collection (GCC) Internals

‘can_align_p (value, align)’
Return true if we can align value up or down to the nearest multiple of align
at compile time. The answer is the same for both directions.

‘can_align_down (value, align, &aligned)’
Return true if can_align_p; if so, set aligned to the greatest aligned value that
is less than or equal to value.

‘can_align_up (value, align, &aligned)’
Return true if can_align_p; if so, set aligned to the lowest aligned value that
is greater than or equal to value.

‘known_equal_after_align_down (a, b, align)’
Return true if we can align a and b down to the nearest align boundary at
compile time and if the two results are equal.

‘known_equal_after_align up (a, b, align)’
Return true if we can align a and b up to the nearest align boundary at compile
time and if the two results are equal.

‘aligned_lower_bound (value, align)’
Return a result that is no greater than value and that is aligned to align.
The result will the closest aligned value for some indeterminate values but not
necessarily for all.

For example, suppose we are allocating an object of size bytes in a downward-
growing stack whose current limit is given by limit. If the object requires align
bytes of alignment, the new stack limit is given by:

aligned_lower_bound (limit - size, align)

‘aligned_upper_bound (value, align)’
Likewise return a result that is no less than value and that is aligned to align.
This is the routine that would be used for upward-growing stacks in the scenario
just described.

‘known_misalignment (value, align, &misalign)’
Return true if we can calculate the misalignment of value with respect to align
at compile time, storing the result in misalign if so.

‘known_alignment (value)’
Return the minimum alignment that value is known to have (in other words,
the largest alignment that can be guaranteed whatever the values of the inde-
terminates turn out to be). Return 0 if value is known to be 0.

‘force_align_down (value, align)’
Assert that value can be aligned down to align at compile time and return the
result. When using this routine, please add a comment explaining why the
assertion is known to hold.

‘force_align_up (value, align)’
Likewise, but aligning up.

‘force_align_down_and_div (value, align)’
Divide the result of force_align_down by align. Again, please add a comment
explaining why the assertion in force_align_down is known to hold.



Chapter 10: Sizes and offsets as runtime invariants 165

‘force_align_up_and_div (value, align)’
Likewise for force_align_up.

‘force_get_misalignment (value, align)’
Assert that we can calculate the misalignment of value with respect to align at
compile time and return the misalignment. When using this function, please
add a comment explaining why the assertion is known to hold.

10.6 Computing bounds on poly_ints

poly_int also provides routines for calculating lower and upper bounds:

‘constant_lower_bound (a)’
Assert that a is nonnegative and return the smallest value it can have.

‘constant_lower_bound_with_limit (a, b)’
Return the least value a can have, given that the context in which a appears
guarantees that the answer is no less than b. In other words, the caller is
asserting that a is greater than or equal to b even if ‘known_ge (a, b)’ doesn’t
hold.

‘constant_upper_bound_with_limit (a, b)’
Return the greatest value a can have, given that the context in which a appears
guarantees that the answer is no greater than b. In other words, the caller is
asserting that a is less than or equal to b even if ‘known_le (a, b)’ doesn’t
hold.

‘lower_bound (a, b)’
Return a value that is always less than or equal to both a and b. It will be the
greatest such value for some indeterminate values but necessarily for all.

‘upper_bound (a, b)’
Return a value that is always greater than or equal to both a and b. It will be
the least such value for some indeterminate values but necessarily for all.

10.7 Converting poly_ints

A poly_int<n, T> can be constructed from up to n individual T coefficients, with the
remaining coefficients being implicitly zero. In particular, this means that every poly_
int<n, T> can be constructed from a single scalar T, or something compatible with T.
Also, a poly_int<n, T> can be constructed from a poly_int<n, U> if T can be con-
structed from U.
The following functions provide other forms of conversion, or test whether such a conver-
sion would succeed.

‘value.is_constant ()’
Return true if poly_int value is a compile-time constant.

‘value.is_constant (&c1)’
Return true if poly_int value is a compile-time constant, storing it in c1 if so.
cl must be able to hold all constant values of value without loss of precision.



166 GNU Compiler Collection (GCC) Internals

‘value.to_constant ()’
Assert that value is a compile-time constant and return its value. When using
this function, please add a comment explaining why the condition is known to
hold (for example, because an earlier phase of analysis rejected non-constants).

‘value.to_shwi (&p2)’
Return true if ‘poly_int<N, T>’ value can be represented without loss of pre-
cision as a ‘poly_int<N, HOST_WIDE_INT>’, storing it in that form in p2 if so.

‘value.to_uhwi (&p2)’
Return true if ‘poly_int<N, T>’ value can be represented without loss of pre-
cision as a ‘poly_int<N, unsigned HOST_WIDE_INT>’, storing it in that form
in p2 if so.

‘value.force_shwi ()’
Forcibly convert each coefficient of ‘poly_int<N, T>’ value to HOST_WIDE_INT,
truncating any that are out of range. Return the result as a ‘poly_int<W,
HOST_WIDE_INT> .

‘value.force_uhwi ()’
Forcibly convert each coefficient of ‘poly_int<N, T>’ value to unsigned
HOST_WIDE_INT, truncating any that are out of range. Return the result as a
‘poly_int<N, unsigned HOST_WIDE_INT>’.

wi::shwi (value, precision)’
Return a poly_int with the same value as value, but with the coeflicients
converted from HOST_WIDE_INT to wide_int. precision specifies the precision of
the wide_int cofficients; if this is wider than a HOST_WIDE_INT, the coeflicients
of value will be sign-extended to fit.

wi::uhwi (value, precision)’
Like wi: :shwi, except that value has coefficients of type unsigned HOST_WIDE_
INT. If precision is wider than a HOST_WIDE_INT, the coefficients of value will
be zero-extended to fit.

wi::sext (value, precision)’
Return a poly_int of the same type as value, sign-extending every coefficient
from the low precision bits. This in effect applies wi: :sext to each coefficient
individually.

wi::zext (value, precision)’
Like wi: :sext, but for zero extension.

‘poly_wide_int::from (value, precision, sign)’
Convert value to a poly_wide_int in which each coefficient has precision bits.
Extend the coefficients according to sign if the coefficients have fewer bits.

‘poly_offset_int::from (value, sign)’
Convert value to a poly_offset_int, extending its coefficients according to
sign if they have fewer bits than offset_int.

‘poly_widest_int::from (value, sign)’
Convert value to a poly_widest_int, extending its coefficients according to
sign if they have fewer bits than widest_int.



Chapter 10: Sizes and offsets as runtime invariants 167

10.8 Miscellaneous poly_int routines

‘print_dec (value, file, sign)’

‘print_dec (value, file)’
Print value to file as a decimal value, interpreting the coefficients according to
sign. The final argument is optional if value has an inherent sign; for example,
poly_int64 values print as signed by default and poly_uint64 values print as
unsigned by default.

This is a simply a poly_int version of a wide-int routine.

10.9 Guidelines for using poly_int

One of the main design goals of poly_int was to make it easy to write target-independent
code that handles variable-sized registers even when the current target has fixed-sized reg-
isters. There are two aspects to this:

e The set of poly_int operations should be complete enough that the question in most
cases becomes “Can we do this operation on these particular poly_int values? If not,
bail out” rather than “Are these poly_int values constant? If so, do the operation,
otherwise bail out”.

e If target-independent code compiles and runs correctly on a target with one value
of NUM_POLY_INT_COEFFS, and if the code does not use asserting functions like to_
constant, it is reasonable to assume that the code also works on targets with other
values of NUM_POLY_INT_COEFFS. There is no need to check this during everyday de-
velopment.

So the general principle is: if target-independent code is dealing with a poly_int value,
it is better to operate on it as a poly_int if at all possible, choosing conservatively-correct
behavior if a particular operation fails. For example, the following code handles an index
pos into a sequence of vectors that each have nunits elements:

/* Calculate which vector contains the result, and which lane of
that vector we need. */
if (!can_div_trunc_p (pos, nunits, &vec_entry, &vec_index))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"Cannot determine which vector holds the"
" final result.\n");
return false;

}

However, there are some contexts in which operating on a poly_int is not possible or
does not make sense. One example is when handling static initializers, since no current
target supports the concept of a variable-length static initializer. In these situations, a
reasonable fallback is:

if (poly_value.is_constant (&const_value))

{

/* Operate on const_value. */

else



168 GNU Compiler Collection (GCC) Internals

/* Conservatively correct fallback. */

}

poly_int also provides some asserting functions like to_constant. Please only use these
functions if there is a good theoretical reason to believe that the assertion cannot fire. For
example, if some work is divided into an analysis phase and an implementation phase, the
analysis phase might reject inputs that are not is_constant, in which case the implementa-
tion phase can reasonably use to_constant on the remaining inputs. The assertions should
not be used to discover whether a condition ever occurs “in the field”; in other words,
they should not be used to restrict code to constants at first, with the intention of only
implementing a poly_int version if a user hits the assertion.

If a particular asserting function like to_constant is needed more than once for the same
reason, it is probably worth adding a helper function or macro for that situation, so that
the j