
GNU a2ps, version 4.13
General Purpose PostScript Generating Utility

Edition 4.13, 6 February 2000

Akim Demaille
Miguel Santana

Copyright c© 1988-1993 Miguel Santana
Copyright c© 1995-2000 Akim Demaille, Miguel Santana
Permission is granted to make and distribute verbatim copies of this manual provided the copy-
right notice and this permission notice are preserved on all copies.
Permission is granted to copy and distribute modified versions of this manual under the condi-
tions for verbatim copying, provided that the entire resulting derived work is distributed under
the terms of a permission notice identical to this one.
Permission is granted to copy and distribute translations of this manual into another language,
under the above conditions for modified versions, except that this permission notice may be
stated in a translation approved by the Free Software Foundation.

Short Contents

1 Introduction . 1

2 User’s Guide . 4

3 Invoking a2ps . 10

4 Configuration Files . 28

5 Library Files . 36

6 Encodings . 40

7 Pretty Printing. 45

8 PostScript . 72

9 Contributions . 77

10 Frequently asked questions . 84

Appendix A Glossary. 89

Appendix B Genesis . 93

Appendix C Copying . 95

Concept Index . 96

Table of Contents

1 Introduction. 1
1.1 Description . 1
1.2 Reporting Bugs . 2
1.3 a2ps Mailing List . 2
1.4 Helping the Development . 2

2 User’s Guide . 4
2.1 Purpose . 4
2.2 How to print . 4

2.2.1 Basics for Printing . 4
2.2.2 Special Printers . 5
2.2.3 Using Delegations . 5
2.2.4 Printing Duplex . 6
2.2.5 Checking the Defaults . 7

2.3 Important parameters . 7
2.4 Localizing. 8
2.5 Interfacing with Other Programs . 8

2.5.1 Interfacing With a Mailer. 8
2.5.2 Netscape . 8

3 Invoking a2ps. 10
3.1 Command line options . 10

3.1.1 Tasks Options . 10
3.1.2 Global Options . 12
3.1.3 Sheet Options . 13
3.1.4 Page Options . 15
3.1.5 Headings Options . 16
3.1.6 Input Options . 17
3.1.7 Pretty Printing Options . 19
3.1.8 Output Options . 20
3.1.9 PostScript Options . 21

3.2 Escapes . 22
3.2.1 Use of Escapes . 22
3.2.2 General Structure of the Escapes . 23
3.2.3 Available Escapes . 23

4 Configuration Files . 28
4.1 Including Configuration Files . 28
4.2 Your Library Path . 28
4.3 Your Default Options . 29
4.4 Your Media . 29
4.5 Your Printers . 29
4.6 Your Shortcuts . 30
4.7 Your PostScript magic number . 31
4.8 Your Page Labels . 31
4.9 Your Variables . 31

4.9.1 Defining Variables . 31
4.9.2 Predefined Variables . 32

4.10 Your Delegations . 32
4.10.1 Defining a Delegation . 33
4.10.2 Guide Line for Delegations . 33
4.10.3 Predefined Delegations . 34

4.11 Your Internal Details . 35

5 Library Files . 36
5.1 Documentation Format . 36
5.2 Map Files . 37
5.3 Font Files . 38

5.3.1 Fonts Map File . 38
5.3.2 Fonts Description Files . 38
5.3.3 Adding More Font Support . 38

5.4 Style Sheet Files . 39

6 Encodings . 40
6.1 What is an Encoding . 40
6.2 Encoding Files . 41

6.2.1 Encoding Map File. 41
6.2.2 Encoding Description Files . 41
6.2.3 Some Encodings . 42

7 Pretty Printing . 45
7.1 Syntactic limits . 45
7.2 Known Style Sheets . 45
7.3 Type Setting Style Sheets . 55

7.3.1 Symbol . 55
7.3.2 PreScript. 55

7.3.2.1 Syntax . 55
7.3.2.2 PreScript Commands . 55
7.3.2.3 Examples . 56

7.3.3 PreTEX . 56
7.3.3.1 Special characters . 56
7.3.3.2 PreTEXCommands . 56
7.3.3.3 Differences with LaTEX . 57

7.3.4 TEXScript . 57
7.4 Faces . 58
7.5 Style Sheets Semantics . 58

7.5.1 Name and key . 59
7.5.2 Comments . 59
7.5.3 Alphabets . 59
7.5.4 Case sensitivity . 59
7.5.5 P-Rules . 59
7.5.6 Sequences . 60
7.5.7 Optional entries . 60

7.6 Style Sheets Implementation . 60
7.6.1 A Bit of Syntax. 61
7.6.2 Style Sheet Header . 61
7.6.3 Syntax of the Words . 62
7.6.4 Inheriting from Other Style Sheets 63
7.6.5 Syntax for the P-Rules . 63
7.6.6 Declaring the keywords and the operators 64
7.6.7 Declaring the sequences . 65
7.6.8 Checking a Style Sheet . 66

7.7 A Tutorial on Style Sheets . 67

7.7.1 Example and syntax . 67
7.7.2 Implementation . 67
7.7.3 The Entry in ‘sheets.map’ . 69
7.7.4 More Sophisticated Rules . 69
7.7.5 Guide Line for Distributed Style Sheets 70

8 PostScript . 72
8.1 Foreword: Good and Bad PostScript . 72
8.2 Page Device Options . 73
8.3 Statusdict Options . 73
8.4 Colors in PostScript . 73
8.5 a2ps PostScript Files . 74
8.6 Designing PostScript Prologues . 74

8.6.1 Definition of the faces . 74
8.6.2 Prologue File Format . 75
8.6.3 A step by step example . 75

9 Contributions . 77
9.1 card . 77

9.1.1 Invoking card . 77
9.1.2 Caution when Using card . 78

9.2 fixps . 78
9.2.1 Invoking fixps . 78

9.3 fixnt . 79
9.3.1 Invoking fixnt . 79

9.4 pdiff . 79
9.4.1 Invoking pdiff . 79

9.5 psmandup . 80
9.5.1 Invoking psmandup . 80

9.6 psset . 81
9.6.1 Invoking psset . 81

10 Frequently asked questions 84
10.1 Why Does...? . 84

10.1.1 Why Does it Print Nothing? . 84
10.1.2 Why Does it Print in Simplex? . 84
10.1.3 Why Does it Print in Duplex? . 84
10.1.4 Why Does it Not Fit on the Paper? 85
10.1.5 Why Does it Print Junk? . 85
10.1.6 Why Does it Say my File is Binary? 85
10.1.7 Why Does it Refuse to Change the Font Size 86

10.2 How Can I ...? . 86
10.2.1 How Can I Leave Room for Binding? 86
10.2.2 How Can I Print stdin? . 86
10.2.3 How Can I Change the Fonts? . 86
10.2.4 How Can I Simulate the Old Option ‘-b’? 86
10.2.5 How Can I Pass Options to ‘lpr’ 86
10.2.6 How Can I Print on Non PostScript Printers? 87
10.2.7 How Can I Print Man Pages with Underlines 87

10.3 Please tell me... 87
10.3.1 Is a2ps Y2K compliant? . 88
10.3.2 Why Have the Options Changed? 88
10.3.3 Why not having used yacc and such 88

Appendix A Glossary . 89

Appendix B Genesis . 93
B.1 History . 93
B.2 Thanks . 93
B.3 Translators . 94

Appendix C Copying . 95

Concept Index . 96

Chapter 1: Introduction 1

1 Introduction

This document describes GNU a2ps version 4.13. The latest versions may be found on the
a2ps home page1.

We tried to make this document informative and pleasant. It tries to be more than a plain
reference guide, and intends to offer information about the concepts or tools etc. that are related
to printing PostScript. This is why it is now that big: to offer you all the information you might
want, not because a2ps is difficult to use. See Appendix A [Glossary], page 89, for technical
words or even general information.

Please, send us emailcards :). Whatever the comment is, or if you just like a2ps, write to
Miguel Santana (Miguel.Santana@st.com) and Akim Demaille (akim@freefriends.org).

1.1 Description

a2ps formats files for printing on a PostScript printer.

The format used is nice and compact: normally two pages on each physical page, borders
surrounding pages, headers with useful information (page number, printing date, file name or
supplied header), line numbering, pretty-printing, symbol substitution etc. This is very useful
for making archive listings of programs or just to check your code in the bus. Actually a2ps is
kind of bootstrapped: its sources are frequently printed with a2ps :).

While at the origin its names was derived from “ASCII to PostScript”, today we like to think
of it as “Any to PostScript”. Indeed, a2ps supports delegations, i.e., you can safely use a2ps to
print DVI, PostScript, LaTeX, JPEG etc., even compressed.

A short list of features of a2ps might look like this:

− Customizable through various configuration files (see Chapter 4 [Configuration Files],
page 28)

− Powerful escapes to define the headers, table of contents etc. the way you want (see Sec-
tion 3.2 [Escapes], page 22);

− Variables to push even further the customizability in a comfortable manner (see Section 4.9
[Your Variables], page 31);

− Open approach of encodings (see Chapter 6 [Encodings], page 40);
− Excellent support of the Latin 2, 3, 4, 5 and 6 encodings, thanks to Ogonkify (see section

“Overview” in Ogonkify manual), written by Juliusz Chroboczek.
− Fully customizable output style: fonts, background and foreground colors, line numbering

style etc. (see Section 8.6 [Designing PostScript Prologues], page 74).
− Possibility to delegate the processing of some files to other filters (see Section 4.10 [Your

Delegations], page 32).
− Many contributions, e.g., pretty-print diffs, print reference cards of programs, sanitize bro-

ken PostScript files, print Duplex on Simplex printers etc. (see Chapter 9 [Contributions],
page 77).

− And finally, the ability to pretty-print sources written in quite a few various languages (see
Chapter 7 [Pretty Printing], page 45).

1 http://www.inf.enst.fr/~demaille/a2ps

�egingroup catcode `-=12 catcode `unhbox voidb@x kern .06em vbox {hrule width.3em height.1ex}=12 catcode `-=active let -let unhbox voidb@x kern .06em vbox {hrule width.3em height.1ex}_http://www.inf.enst.fr/{�am 	tfam 	entt char 126}demaille/a2psendgroup

Chapter 1: Introduction 2

1.2 Reporting Bugs

We try hard to make a2ps portable on any Unix platform, and bug free. But sometimes
there can still be bad surprises, even after having compiled and checked a2ps on several very
different platforms.

You may encounter some of these problems yourself. In any case, please never abandon
without giving us a chance. We need information from everybody so that mistakes get fixed as
fast as possible.

So, if you have a problem (configuration error, compilation error, runtime error, documenta-
tion error or unclear), first check in the FAQ (see Chapter 10 [FAQ], page 84), then on the page
Known a2ps Bugs2 if the issue has not been addressed yet. If it is not the case, but it appears
that the version of a2ps you have is old, consider upgrading.

If the problem persists, send us a mail (bug-a2ps@gnu.org) which subject is ‘a2ps version:
short-description’ and which content mentions the name of your machine and OS, the version of
a2ps, every detail you have on your compiler, and as much traces as possible (the error messages
you get on the screen, or the output of make when it fails etc.).

Be sure to get a quick answer.

1.3 a2ps Mailing List

There is a mailing list in which are discussed various topics around a2ps: a2ps@gnu.org.
There are also announcements about the version in alpha testing, requests for comments, new
sheets, etc.

To subscribe to the list, send a mail to a2ps-request@gnu.org, with ‘subscribe’ in the
body.

Please, note that the mailing list is by no means a bug reporting address: use
bug-a2ps@gnu.org instead.

1.4 Helping the Development

If you like a2ps and if you feel like helping, there are several things you can do.

Testing You just can’t imagine how hard it is to make sure that the program that works
perfectly here will work on your machine. Actually, in general the last weeks before
a release are mostly dedicated to (Unix) portability issues.
So we need beta-testers! To be one is fairly simple: subscribe to the mailing-list
where the betas are announced and distributed.

Translation
The interface of a2ps is under GNU gettext which means that all the messages can
be translated, without having to look at the code of a2ps: you don’t need to be a
programmer at all. All the details are available on the a2ps translation page3.

Style Sheets
Since a2ps is evolving and getting more powerful, the style sheets should be checked
and improved. There are too many so that the authors work on them. Therefore

2 http://www.inf.enst.fr/~demaille/a2ps/bugs.html
3 http://www.inf.enst.fr/~demaille/a2ps/po/

�egingroup catcode `-=12 catcode `unhbox voidb@x kern .06em vbox {hrule width.3em height.1ex}=12 catcode `-=active let -let unhbox voidb@x kern .06em vbox {hrule width.3em height.1ex}_http://www.inf.enst.fr/{�am 	tfam 	entt char 126}demaille/a2psendgroup /bugs.html
�egingroup catcode `-=12 catcode `unhbox voidb@x kern .06em vbox {hrule width.3em height.1ex}=12 catcode `-=active let -let unhbox voidb@x kern .06em vbox {hrule width.3em height.1ex}_http://www.inf.enst.fr/{�am 	tfam 	entt char 126}demaille/a2psendgroup /po/

Chapter 1: Introduction 3

if you feel your favorite language is not honored as it should be, improve the style
sheet! (see Chapter 7 [Pretty Printing], page 45 for details.)

Encodings a2ps is wide open to any 8-bit encoding. If your language is not covered today by
a2ps, you can easily provide the support yourself. Honestly, the trickiest part is to
find correct free fonts that support your mother tongue (see Section 6.2 [Encoding
Files], page 41, to know more).

Fonts There are still some characters missing in Ogonkify. See the list of missing charac-
ters4 and the Ogonkify home page5 for details.

Documentation
If you feel something is missing or is unclear, send us your contributions.

Porting Porting a program to special architectures (MS-DOS, OS/2 etc.), or building special
packages (e.g., RPM) requires having an access to these architectures. If you feel
like maintaining such a port, tell us.

Features Well, if you feel like doing something else, go ahead! But contact us, because we have
quite a big stack of things we want to do or have started to do, and synchronizing
might be useful.

4 http://www.dcs.ed.ac.uk/home/jec/ogonkify/missing.html
5 http://www.dcs.ed.ac.uk/home/jec/ogonkify/

http://www.dcs.ed.ac.uk/home/jec/ogonkify/missing.html
http://www.dcs.ed.ac.uk/home/jec/ogonkify/

Chapter 2: User’s Guide 4

2 User’s Guide

This chapter is devoted to people who don’t know a2ps yet: we try to give a soft and smooth
introduction to the most useful features. For a reference manual, see Chapter 3 [Invoking a2ps],
page 10. For the definition of some words, see Appendix A [Glossary], page 89, for questions
you have, see Chapter 10 [FAQ], page 84.

2.1 Purpose

a2ps is a program that takes a text file (i.e., human readable), and makes a PostScript file
out of it. Typically output is sent to a printer.

2.2 How to print

To print a file ‘doc.txt’, just give it to a2ps: the default setting should be the one you’d
like: � �

gargantua ~ $ a2ps doc.txt
[doc.txt (plain): 9 pages on 5 sheets]
[Total: 9 pages on 5 sheets] sent to the default printer
 	

a2ps sent the file ‘doc.txt’ to the default printer, writing two columns of text on a single
face of the sheet. Indeed, by default a2ps uses the option ‘-2’, standing for two virtual pages.

2.2.1 Basics for Printing

Say you want to print the C file ‘bar.c’, and its header ‘foo.h’, on 4 virtual pages, and save
it into the file ‘foobar.ps’. Just hit:� �

gargantua $ a2ps foo.h bar.c -4 -o foobar.ps
[foo.h (C): 1 page on 1 sheet]
[bar.c (C): 3 pages on 1 sheet]
[Total: 4 pages on 2 sheets] saved into the file ‘foobar.ps’
 	

The option ‘-4’ tells a2ps to make four virtual pages: two rows by two columns. The option
‘-o foobar.ps’ (which is the short version of ‘--output=foobar.ps’) specifies the output file.
Long options must always be separated by spaces, though short options with no arguments may
be grouped.

Note too that the options may be specified before or after the files, it does not matter.
If you send ‘foobar.ps’ to a printer, you’ll discover that the keywords were highlighted, that

the strings and comments have a different face. Indeed, a2ps is a pretty-printer: if it knows the
(programming) language in which your file is written, it will try to make it look nice and clear
on the paper.

But too bad: ‘foo.h’ is only one virtual page long, and ‘bar.c’ takes three. Moreover, the
comments are essential in those files. And even worse: the system’s default printer is out of ink.
Thanks god, precious options may help you:

Chapter 2: User’s Guide 5

� �
gargantua $ a2ps -4 -Av foo.h bar.c --prologue=gray -P lw
[foo.h (C): 1 page on 1 sheet]
[bar.c (C): 3 pages on 1 sheet]
[Total: 4 pages on 1 sheet] sent to the printer ‘lw’
 	

Here the option ‘-A’ is a short cut for the option ‘--file-align’ which specifies how different
files should be separated. This option allows several symbolic arguments: ‘virtual’, ‘rank’,
‘page’, ‘sheet’ (See Section 3.1.3 [Sheet Options], page 13, for more details). The value ‘virtual’
means not to start each file on a different virtual pages.

So to fill the page is asked by ‘--file-align=virtual’, or ‘-A virtual’. But symbolic
arguments can be abbreviated when there are no ambiguity, so here, you can just use ‘-Av’.

The option ‘-P lw’ means to print on the printer named ‘lw’, and finally, the long option
‘--prologue’ requires the use one of the alternative printing styles. There are other prologues
(See Section 3.1.6 [Input Options], page 17, option ‘--prologue’), and you can even design yours
(see Section 8.6 [Designing PostScript Prologues], page 74).

2.2.2 Special Printers

There are three special printers pre-defined.
The first one, void, sends the output to the trash. Its main use is to see how many pages

would have been used.� �
gargantua ~ $ a2ps -P void parsessh.c
[parsessh.c (C): 33 pages on 17 sheets]
[Total: 33 pages on 17 sheets] sent to the printer ‘void’
 	

The second, display sends the output to Ghostview, so that you can check the output
without printing. Of course if you don’t have Ghostview, it won’t work... And it is up to you
to configure another displaying application (see Section 4.5 [Your Printers], page 29).

The last, file saves the output into a file named after the file you printed (e.g., saves into
‘foo.ps’ when you print ‘foo.c’).

2.2.3 Using Delegations

a2ps can decide that a2ps itself is not the right tool to do what you want. In that case it
delegates the task to other programs. What you should retain from this, is, forget that there are
delegations. Indeed, the interface with the delegations has been designed so that you don’t need
to be aware that they exist to use them. Do as usual.

As an example, if you need to print a PostScript file, just hit:� �
gargantua ~ $ a2ps article.ps -d
[article.ps (ps, delegated to PsNup): 7 pages on 4 sheets]
[Total: 8 pages on 4 sheets] sent to the default printer
 	

While honoring your defaults settings, a2ps delegates the task to put two virtual pages per
physical page to psnup, a powerful filter part of the famous psutils by Angus Duggan.

Suppose now that you want to display a Texinfo file. Then, provided you have all the
programs a2ps needs, just hit

Chapter 2: User’s Guide 6

� �
gargantua ~ $ a2ps a2ps.texi -P display
[a2ps.texi (texinfo, delegated to texi2dvi): 75 pages on 38 sheets]
[Total: 76 pages on 38 sheets] sent to the printer ‘display’
 	

Once the read documentation, you know you want to print just pages 10 to 20, plus the
cover. Just hit:� �

gargantua ~ $ a2ps a2ps.texi --pages=1,10-20 -d
[a2ps.texi (texinfo, delegated to texi2dvi): 13 pages on 7 sheets]
[Total: 14 pages on 7 sheets] sent to the default printer
 	

A final word: compressed files can be treated in the very same way:� �
gargantua ~ $ a2ps a2ps.texi.gz -a1,10-20 -d
[a2ps.texi (compressed, delegated to Gzip-a2ps): 13 pages on 7 sheets]
[Total: 14 pages on 7 sheets] sent to the default printer
 	

You should be aware that:
− the option ‘-Z’ enables the delegations if they are not (see ‘--list=defaults’ for your

settings);
− the set of delegations is customizable, to know the delegations your a2ps knows, consult

‘a2ps --list=delegations’.

2.2.4 Printing Duplex

If you still want to save more paper, and you are amongst the set of happy users of Duplex
printers, a2ps will also be able to help you (See Appendix A [Glossary], page 89, for definitions).
The option to specify Duplex printing is ‘--sides=mode’ (see Section 3.1.9 [PostScript Options],
page 21).

Here is how to print the documentation in Duplex and send it to the Duplex printer ‘margot’:� �
quasimodo ~ a2ps/doc $ a2ps -s2 -Pmargot a2ps.texi
[a2ps.texi (texinfo, delegated to texi2dvi): 109 pages on 28 sheets]
[Total: 110 pages on 28 sheets] sent to the printer ‘margot’
 	

This is also valid for several files.
Actually, you can do something even more tricky: print a small book! This is much more

complicated than printing Duplex, because the pages needs to be completely reorganized another
way. This is precisely the job of psbook, yet another PsUtil from Angus Duggan. But there is
a user option which encapsulates the magic sequence of options: ‘book’. Therefore, just run� �

quasimodo a2ps/doc $ a2ps -=book -Pmargot a2ps.texi
[a2ps.texi (texinfo, delegated to texi2dvi): 109 pages on 109 sheets]
[Total: 109 pages on 109 sheets] sent to the printer ‘margot’
 	

and voila‘ !, a booklet printed on margot!

Chapter 2: User’s Guide 7

We strongly discourage you to try with several files at once, because the tools then easily
get lost. And, after all, the result will be exactly the same once you collated all the booklets
together.

Another limitation is that this does not work if it is not sent to a printer. This kind of weird
limitations will be solved in the future.

2.2.5 Checking the Defaults

If a2ps did not have the behavior expected, this may be because of the default settings given
by your system administrator. Checking those default values is easy:� �

~ % a2ps --list=defaults
Configuration status of a2ps 4.12a
==================================

Sheets:

medium = A4, portrait
page layout = 1 x 1, rows first
borders = yes
file alignment = page
interior margin = 0

More stuff deleted here
Internals:

verbosity level = 2
file command = /usr/bin/file -L
temporary directory = /tmp
library path =

/home/akim/.a2ps
/usr/share/a2ps/sheets
/usr/share/a2ps/ps
/usr/share/a2ps/encoding
/usr/share/a2ps/afm
/usr/share/ogonkify/afm
/usr/share/a2ps/ppd
/usr/share/a2ps/fonts
/usr/share/ogonkify/fonts
/usr/share/a2ps
 	

Remember that the on-line help is always available. Moreover, if your screen is small, you
may pipe it into more. Just trust this:

a2ps --help | more

2.3 Important parameters

Many things are parameterizable in a2ps, but two things are just essential to make sure
everything goes right:

Chapter 2: User’s Guide 8

The paper Make sure that the paper a2ps uses is the same as your printer (See Section 3.1.3
[Sheet Options], page 13, option ‘--medium’).

The encoding
Make sure that the encoding a2ps uses is the same as the standard alphabet in your
country (See Section 3.1.6 [Input Options], page 17, option ‘--encoding’).

Both values may be checked with ‘a2ps --list=defaults’.

2.4 Localizing

a2ps provides some Native Language Support, that is speaking your mother tongue. It uses
three special features for non-English languages:

the tongue i.e., the language used by the interface,

the date i.e., the format and the words used in the language to specify a date.

To enable these features, properly set your environment variable LANG (see the documentation
of your system, for instance ‘man locale’, ‘man environ’ etc.).

The problem with this approach is that a lot more than just messages and time information
is affected: especially the way numbers are written changes, what may cause problems with awk
and such.

So if you just want messages and time format to be localized, then define:
set LC_MESSAGES=fr ; export LC_MESSAGES
set LC_TIME=fr ; export LC_TIME

2.5 Interfacing with Other Programs

Here are some tips on how to use a2ps with other programs.

2.5.1 Interfacing With a Mailer

When you print from a mailer (or a news reader), your mailer calls a tool, say a2ps on a
part of the whole mailbox. This makes it difficult for a2ps to guess that the file is of the type
‘mail’. Therefore, for better results, make sure to tell a2ps the files are mails. The user option
‘mail’ (or ‘longmail’ for longer inputs) encapsulates most typical tuning users want to print
mails (for instance, don’t print all the headers).

Most specifically, if your mailer is:

elm Once you are in elm, hit o to enter in the options edition menu, hit p to edit the
printer command, and enter ‘a2ps -=mail %s -d’. The option ‘-d’ means to print
on the default printer.

pine Jan Chrillesen (jan@chrillesen.dk) suggests us how to use a2ps with the Pine
mail-reader. Add the following to ‘.pinerc’ (of course you can put it in ‘pine.conf’
as well):

Your printer selection
printer=a2ps -=mail -d

Special print command
personal-print-command=a2ps -=mail -d

Chapter 2: User’s Guide 9

2.5.2 Netscape

This is actually valid for any program that generates PostScript that you want to post-process
with a2ps. Use the following command:

a2ps

Not too hard, isn’t it?
Nevertheless, this setting suppose your world is OK, your file(1) detects correctly

PostScript files, and your a2ps is configured to delegate. In case one one these conditions
is not met, use:

a2ps -ZEps

Do not forget to tell Netscape whether your printer supports colors, and the type of paper it
uses.

Chapter 3: Invoking a2ps 10

3 Invoking a2ps

Calling a2ps is fairly simple:
a2ps Options... Files...

If no Files... are given, a2ps prints its standard input. If ‘-’ appears in the Files..., it
designates the standard input too.

3.1 Command line options

To read the options and arguments that you give, a2ps uses GNU getopt, hence:
− the options (short with arguments or long) must be separated by spaces.
− the order between options and files does not matter: ‘a2ps -4m main.c’ and ‘a2ps main.c

-4m’ are identical.
− the order between options does matter, especially between options that influence the same

parameters. For instance ‘a2ps -1 -l132’ is not the same as ‘a2ps -l132 -1’ (the latter
being equivalent to ‘a2ps -1’).

− short options may be grouped together: ‘a2ps -4mg main.c -P printer’
− when there are no ambiguities, long options can be abbreviated, e.g., ‘--pro’ will be un-

derstood as ‘--prologue’,
− ‘--’ ends the options. Anything behind ‘--’ is considered to be a file: ‘a2ps -- -2’ prints

the file ‘-2’1.

Here after a boolean is considered as true (i.e. setting the option on), if boolean is ‘yes’, or
‘1’; as false if it equals ‘no’ or ‘0’; and raise an error otherwise. The corresponding short option
takes no arguments, but corresponds to a positive answer.

When an argument is presented between square brackets, it means that it is optional. Op-
tional arguments to short option must never be separated from the option.

3.1.1 Tasks Options

Task options specify the task a2ps will perform. It will not print, it executes the task and
exits successfully.

Option--version
print version and exit successfully.

Option--help
Print a short help, and exit successfully.

Option--copyright
Display Copyright and copying conditions, and exit successfully.

1 A classical Unix trick to make the difference between the option ‘-2’, and the file ‘-2’ is to
type ‘./-2’.

Chapter 3: Invoking a2ps 11

Option--guess
Act like file does: display the (key of the) type of the Files.
For instance, on a C file, you expect it to answer ‘c’, and upon a PostScript file, ‘ps’.
This can be very useful on broken systems to understand why a file is printed with a bad
style sheet (see Section 5.4 [Style Sheet Files], page 39).

Option--which
Look in the library for the files which names are given as arguments. For instance:� �
~ % a2ps --which bw.pro gray.pro
/usr/local/share/a2ps/ps/bw.pro
/usr/local/share/a2ps/ps/gray.pro
 	
If there are several library files matching the name, only the first one is reported: this
allows to check which occurrence of a file is used by a2ps.

Option--glob
Look in the library for the files which names match the patterns given as arguments. For
instance:� �
~ % a2ps --glob ’g*.pro’
/usr/local/share/a2ps/ps/gray.pro
/usr/local/share/a2ps/ps/gray2.pro
 	

Option--list=topic
Display a report on a2ps’ status with respect to topic, and exit successfully. topic can be
any non-ambiguous abbreviation of:

‘defaults’
‘options’ Give an extensive report on a2ps configuration and installation.

‘features’
Known media, encodings, languages, prologues, printers, variables, delega-
tions and user options are reported. In a word, anything that you may define.

‘delegations’
Detailed list of the delegations. See Section 4.10 [Your Delegations], page 32.

‘encodings’
Detailed list of known encodings. See Section 6.2.3 [Some Encodings], page 42.

‘media’ Detailed list of known media. See Section 4.4 [Your Media], page 29.

‘prologues’
Detailed list of PostScript prologues. See Section 8.6 [Designing PostScript
Prologues], page 74.

‘printers’
Detailed list of printers and named outputs. See Section 4.5 [Your Printers],
page 29.

‘style-sheets’
Detailed list of the known style sheets. See Section 7.2 [Known Style Sheets],
page 45.

Chapter 3: Invoking a2ps 12

‘user-options’
Detailed list of the user options. See Section 4.6 [Your Shortcuts], page 30.

‘variables’
Detailed list of the variables. See Section 4.9 [Your Variables], page 31.

There are also options meant for the maintainers only, presented for sake of completeness.

‘texinfo-style-sheets’
‘ssh-texi’

Detailed list of known style sheets in Texinfo format. If the sheet verbosity
is set, report version numbers, requirements and ancestors.

‘html-style-sheets’
‘ssh-html’

Detailed list of the style sheets in HTML format.

‘texinfo-encodings’
‘edf-texi’

Detailed list of encodings, in Texinfo format.

‘texinfo-prologues’
‘pro-texi’

Detailed list of prologues, in Texinfo format.

3.1.2 Global Options

These options are related to the interface between you and a2ps.

Option-q
Option--quiet
Option--silent

be really quiet

Option-v[level]
Option--verbose[=level]

tell what we are doing. At
− level = 0, report nothing,
− level = 1, a2ps just prints the total number of pages printed,
− level = 2 (default), it reports it for each file,
− above, it gives internal details.

There is also an interface made for the maintainer with finer grained selection of the
verbosity level. level is a list of tokens (non ambiguous abbreviations are valid) separated
by either ‘,’ or ‘+’. The tokens may be:

‘configuration’
‘options’ reading the configurations files and the options,

‘encodings’
the encodings,

‘expert’ more detailed information is provided: PPD listings is exhaustive,

‘files’ inputs and outputs,

‘fonts’ the fonts,

Chapter 3: Invoking a2ps 13

‘escapes’
‘variables’
‘meta-sequences’

the expansion of escapes and variables,

‘parsers’ any parsing process (style sheets, PPD files etc.),

‘pathwalk’
‘pw’ the search for files,

‘ppd’ PPD processing,

‘sheets’ the style sheets,

‘stats’ statistics on some internal data structures,

‘tools’ launched programs or shell commands ; triggers the escape ‘?V’ on (see Sec-
tion 3.2.3 [Available Escapes], page 23),

‘all’ all the messages.

When a2ps is launched it consults the environment variable A2PS_VERBOSITY. If it is
set, this defines the verbosity level for the whole session (options ‘--verbose’, and ‘-q’
etc. have then no influence). The valid values for A2PS_VERBOSITY are exactly the valid
arguments of the option ‘--verbose’. This helps tracking down configuration problems
that occur before a2ps had even a chance to read the command line.

Option-=shortcut
Option--user-option=shortcut

use the shortcut defined by the user. See Section 4.6 [Your Shortcuts], page 30. Shortcuts
may be freely mixed with regular options and arguments.

There are a few predefined user-options:

‘lp’ emulates a line printer, i.e., turn off most ‘pretty’ features.

‘mail’
‘longmail’

preferred options to print a mail or a news. ‘longmail’ prints more text on a
single sheet.

‘manual’ make the job be printed on the manually fed tray.

Option--debug
enable debugging features. They are:

− print the overall BoundingBox in PostScript;
− down load a PostScript debugger which helps understanding why a printer may reject

a file.

Option-D key [=value]
Option--define=key[=value]

Without value, unset the variable key. Otherwise, set it to value. See Section 4.9 [Your
Variables], page 31, for more details. Note that ‘-Dfoo=’ gives foo an empty value, though
‘-Dfoo’ unsets foo.

Chapter 3: Invoking a2ps 14

3.1.3 Sheet Options

This options specify the general layout, how the sheet should be used.

Option-M medium
Option--medium=medium

use output medium medium. See the output of ‘a2ps --list=media’ for the list of sup-
ported media. Typical values are ‘A3’, ‘A4’, ‘A5’, ‘B4’, ‘B5’, ‘Letter’, ‘Legal’.
‘A4dj’, ‘Letterdj’ are also defined for Desk Jet owners, since that printer needs bigger
margins.
The special medium ‘libpaper’ means that you want a2ps to ask the library libpaper
for the medium to use. This choice is valid only if libpaper was available when a2ps was
configured. See the man page of paperconf for more information.

Option-r
Option--landscape

print in landscape mode

Option-R
Option--portrait

print in portrait mode

Option--columns=num
specify the number of columns of virtual pages per physical page.

Option--rows=num
specify the number of rows of virtual pages per physical page.

Option--major=direction
specify whether the virtual pages should be first filled in rows (direction = ‘rows’) or in
columns (direction = ‘columns’).

Option-1
1 x 1 portrait, 80 chars/line, major rows (i.e. alias for ‘--columns=1 --rows=1
--portrait --chars-per-line=80 --major=rows’).

Option-2
2 x 1 landscape, 80 chars/line, major rows.

Option-3
3 x 1 landscape, 80 chars/line, major rows.

Option-4
2 x 2 portrait, 80 chars/line, major rows.

Option-5
5 x 1 landscape, 80 chars/line, major rows.

Option-6
3 x 2 landscape, 80 chars/line, major rows.

Chapter 3: Invoking a2ps 15

Option-7
7 x 1 landscape, 80 chars/line, major rows.

Option-8
4 x 2 landscape, 80 chars/line, major rows.

Option-9
3 x 3 portrait, 80 chars/line, major rows.

Option-j
Option--borders=boolean

print borders around virtual pages.

Option-A mode
Option--file-align=mode

Align separate files according to mode. This option allows the printing of more than one
file on the same page. mode can be any one of:
‘virtual’ Each file starts on the next available virtual page (i.e., leave no empty virtu-

als).
‘rank’ Each file starts at the beginning of the next row or column depending on the

‘--major’ setting.
‘page’ Each file starts on a new page.
‘sheet’ Each file starts on a new sheet. In Simplex mode, this is the same as ‘page’,

in Duplex mode, files always start on a front side.
an integer num

Each file starts on a page which is a multiple of num plus 1. For instance, for
‘2’, the files must start on odd pages.

Option--margin[=num]
Specify the size of the margin (num PostScript points, or 12 points without arguments)
to leave in the inside (i.e. left for the front side page, and right for the back side). This is
intended to ease the binding.

3.1.4 Page Options

This options are related to the content of the virtual pages.
Please note that the options ‘-f’, ‘-L’, ‘-l’, ‘-m’, and ‘-1’ .. ‘-9’ all have an influence on the

font size. Only the last one will win (i.e., ‘a2ps -L66 -l80’ is the same as ‘a2ps -l80’).

Option--line-numbers[=number]
print the line numbers from number lines to number lines. Default is ‘1’.

Option-C
Alias for ‘--line-numbers=5’.

Option-f size[unit]
Option--font-size=size[unit]

scale font to size for body text. size is a float number, and unit can be ‘cm’ for centimeters,
‘points’ for PostScript points, and ‘in’ for inches. Default unit in ‘points’.
To change the fonts used, change the current prologue (see Section 8.6 [Designing
PostScript Prologues], page 74.

Chapter 3: Invoking a2ps 16

Option-l num
Option--chars-per-line=num

Set the font size so that num columns appear per virtual pages. num is the real number
of columns devoted to the body of the text, i.e., no matter whether lines are numbered or
not.

Option-L num
Option--lines-per-page=num

Set the font size so that num lines appear per virtual pages. This is useful for printing
preformatted documents which have a fixed number of lines per page. The minimum
number of lines per page is set at 40 and maximum is at 160. If a number less than 40 is
supplied, scaling will be turned off.

Option-m
Option--catman

Understand UNIX manual output ie: 66 lines per page and possible bolding and under-
lining sequences. The understanding of bolding and underlining is there by default even
if ‘--catman’ is not specified. You may want to use the ‘ul’ prologue (See Section 3.1.6
[Input Options], page 17, option ‘--prologue’) if you prefer underlining over italics.
If your file is actually a UNIX manual input, i.e., a roff file, then depending whether
you left a2ps delegate or not, you will get a readable version of the text described, or a
pretty-printed version of the describing file (see Section 4.10 [Your Delegations], page 32).

Option-T num
Option--tabsize=num

set tabulator size to num. This option is ignored if --interpret=no is given.

Option--non-printable-format=format
specify how non-printable chars are printed. format can be

‘caret’ Use classical Unix representation: ‘^A’, ‘M-^B’ etc.

‘space’ A space is written instead of the non-printable character.

‘question-mark’
A ‘?’ is written instead of the non-printable character.

‘octal’ For instance ‘\001’, ‘177’ etc.

‘hexa’ For instance ‘\x01’, ‘\xfe’ etc.

‘emacs’ For instance ‘C-h’, ‘M-C-c’ etc.

3.1.5 Headings Options

These are the options through which you may define the information you want to see all
around the pages.

All these options support text as an argument, which is composed of plain strings and escapes.
See Section 3.2 [Escapes], page 22, for details.

Option-B
Option--no-header

no page headers at all.

Chapter 3: Invoking a2ps 17

Option-b[text]
Option--header[=text]

set the page header

Option--center-title[=text]
Option--left-title[=text]
Option--right-title[=text]

Set virtual page center, left and right titles to text.

Option-u[text]
Option--underlay[=text]

use text as under lay (or water mark), i.e., in a light gray, and under every page.

Option--left-footer[=text]
Option--footer[=text]
Option--right-footer[=text]

Set sheet footers to text.

3.1.6 Input Options

Option-a[Page range]
Option--pages[=Page range]

With no argument, print all the page, otherwise select the pages to print. Page range is
a list of interval, such as ‘-a1’: print only the first page, ‘-a-3,4,6,10-’: print the first
3 pages, page 4 and 6, and all the page after 10 (included). Giving ‘toc’ prints the table
of content whatever its page number is.
The pages referred to are the input pages, not the output pages, that is, in ‘-2’, printing
with ‘-a1’ will print the first virtual page, i.e., you will get half the page filled.
Note that page selection does work with the delegations (see Section 4.10 [Your Delega-
tions], page 32).

Option-c
Option--truncate-lines=boolean

Cut lines too large to be printed inside the borders. The maximum line size depends on
format and font size used and whether line numbering is enabled.

Option-i
Option--interpret=boolean

interpret tab and ff chars. This means that ‘^L’ jumps to a new (virtual) pages, ‘tab’
advances to the next tabulation.

Option--end-of-line=type
Specify what sequence of characters denotes the end of line. type can be:

n
unix ‘\n’.

r
mac ‘\r’.

nr ‘\n\r’. As far as we know, this type of end-of-line is not used.

Chapter 3: Invoking a2ps 18

pc
rn ‘\r\n’. This is the type of end-of-line on MS-DOS.

any
auto Any of the previous cases. This last case prevents the bad surprises with files

from PC (trailing ‘^M’).

Option-X key
Option--encoding=key

Use the input encoding identified by key. See Section 6.2.3 [Some Encodings], page 42, and
the result of ‘a2ps --list=encodings’ to know what encodings are supported. Typical
values are ‘ASCII’, ‘latin1’... ‘latin6’, ‘ison’ etc.

Option--stdin=filename
Give the name filename to the files read through the standard input.

Option-t name
Option--title=name

Give the name name to the document. Escapes can be used (see Section 3.2 [Escapes],
page 22).
This is used for instance in the name given to the document from within the PostScript
code (so that Ghostview and others can display a file with its real title, instead of just
the PostScript file name).
It is not the name of the output. It is just a logical title.

Option--prologue=prologue
Use prologue as the PostScript prologue for a2ps. prologue must be in a file named
‘prologue.pro’, which must be in a directory of your library path (see Chapter 5 [Library
Files], page 36). Available prologues are:

‘bold’ This style is meant to replace the old option -b of a2ps 4.3. It is a copy of
the black and white prologue, but in which all the fonts are in Bold.

‘bw’ Style is plain: pure black and white, with standard fonts.

‘color’ Colors are used to highlight the keywords.

‘diff’ This style is meant to be used with the udiff, wdiff style sheets, to underline
the differences. New things are in bold on a diff background, while removed
sequences are in italic.

‘fixed’ This style uses exclusively fixed size fonts. You should use this style if you
want the tabulations to be properly printed.
There are no means to use a fixed size Symbol font, therefore you should not
use the heavy highlighting style.

‘gray’ Gray background is used for comments and labels.

‘gray2’ Black background is used for comments and labels.

‘matrix’ The layout is the same as ‘bw’, but alternating gray and white lines.
There are two macros defining the behavior: ‘pro.matrix.cycle’ defines
the length of the cycle (number of white and gray lines). It defaults to 6.
‘pro.matrix.gray’ defines the number of gray lines. Default is 3.

‘ul’ This style uses bold faces and underlines, but never italics. This is particularly
meant for printing formatted man pages.

Chapter 3: Invoking a2ps 19

Option--print-anyway=boolean
force binary printing. By default, the whole print job is stopped as soon as a binary file
is detected. To detect such a file we make use of a very simple heuristic: if the first sheet
of the file contains more than 40% of non-printing characters, it’s a binary file. a2ps also
asks file(1) what it thinks of the type of the file. If file(1) answers ‘data’, the file will
also be considered as binary, hence not printed.

Option-Z
Option--delegate=boolean

Enable delegation of some files to delegated applications. If delegating is on, then a2ps
will not process the file by itself, but will call an application which handles the file in
another way. If delegation is off, then a2ps will process every file itself.
Typically most people don’t want to pretty-print a PostScript source file, but want to
print what describes that file. Then set the delegations on.
See Section 4.10 [Your Delegations], page 32 for information on delegating, and option
‘--list=delegations’ for the applications your a2ps knows.

Option--toc[=format]
Generate a Table of Contents, which format is an escape (see Section 3.2 [Escapes],
page 22) processed as a PreScript file (see Section 7.3.2 [PreScript], page 55). If no
format is given (i.e., you wrote ‘--toc’), use the default table of contents shape (#{toc}).
If the given format is empty (i.e., you wrote ‘--toc=’), don’t issue the table of contents.
Note that it is most useful to define a variable (see Section 4.9 [Your Variables], page 31),
for instance, in a configuration file:

Variable: toc.mine \
\\Keyword{Table of Content}\n\
#-1!f\
|$2# \\keyword{$-.20n} sheets $3s< to $3s> ($2s#) \
pages $3p<-$3p> $4l# lines\n||\
\\Keyword{End of toc}\n

and to give that variable as argument to ‘--toc’: ‘a2ps *.c --toc=#{toc.mine}’.
Note too that you can generate only the table of content using ‘--pages’:

a2ps *.c --toc -atoc

3.1.7 Pretty Printing Options

These options are related to the pretty printing features of a2ps.

Option--highlight-level=level
Specify the level of highlighting. level can be

‘none’ no highlighting

‘normal’ regular highlighting

‘heavy’ even more highlighting.

See the documentation of the style sheets (‘--list=style-sheets’) for a description of
‘heavy’ highlighting.

Option-g
Alias for ‘--highlight-level=heavy’.

Chapter 3: Invoking a2ps 20

Option-E [language]
Option--pretty-print[=language]

With no arguments, set automatic style selection on. Otherwise, set style to language.
Note that setting language to ‘plain’ turns off pretty-printing. See Section 7.2 [Known
Style Sheets], page 45, and the output of ‘--list=style-sheets’ for the available style
sheets.
If language is ‘key.ssh’, then don’t look in the library path, but use the file ‘key.ssh’.
This is to ease debugging non installed style sheets.

Option--strip-level=num
Depending on the value of num:

‘0’ everything is printed;

‘1’ regular comments are not printed

‘2’ strong comments are not printed

‘3’ no comment is printed.

This option is valuable for instance in java in which case strong comments are the so
called documentation comments, or in SDL for which some graphical editors pollutes the
specification with internal data as comments.
Note that the current implementation is not satisfactory: some undesired blank lines
remain. This is planed to be fixed.

3.1.8 Output Options

These are the options to specify what you want to do out of what a2ps produces. Only a
single destination is possible at a time, i.e., if ever there are several options ‘-o’, ‘-P’ or ‘-d’,
the last one is honored.

Option-o file
Option--output=file

leave output to file file. If file is ‘-’, leave output to the standard output.

Option--version-control=type
to avoid loosing a file, a2ps offers backup services. This is enabled when the output file
already exists, is regular (that is, no backup is done on special files such as ‘/dev/null’),
and is writable (in this case, disabling version control makes a2ps fail the very same way
as if version control was disabled: permission denied).
The type of backups made can be set with the VERSION_CONTROL environment vari-
able, which can be overridden by this option. If VERSION_CONTROL is not set and this
option is not given, the default backup type is ‘existing’. The value of the VERSION_
CONTROL environment variable and the argument to this option are like the GNU Emacs
‘version-control’ variable; they also recognize synonyms that are more descriptive. The
valid values are (unique abbreviations are accepted):

‘none’
‘off’ Never make backups (override existing files).

‘t’
‘numbered’

Always make numbered backups.

Chapter 3: Invoking a2ps 21

‘nil’
‘existing’

Make numbered backups of files that already have them, simple backups of
the others.

‘never’
‘simple’ Always make simple backups.

Option--suffix=suffix
The suffix used for making simple backup files can be set with the SIMPLE_BACKUP_SUFFIX
environment variable, which can be overridden by this option. If neither of those is given,
the default is ‘~’, as it is in Emacs.

Option-P name
Option--printer=name

send output to printer name. See item ‘Printer:’ and ‘Unknown printer:’ in Section 4.5
[Your Printers], page 29 and results of option ‘--list=defaults’ to see the bindings
between printer names and commands.
It is possible to pass additional options to lpr or lp via the variable ‘lp.options’, for
more information see Section 10.2.5 [Pass Options to lpr], page 86.

Option-d
send output to the default printer. See item ‘DefaultPrinter:’ in Section 4.5 [Your
Printers], page 29.

3.1.9 PostScript Options

The following options are related only to variations you want to produce onto a PostScript
output.

Option--ppd[=key]
With no argument, set automatic PPD selection, otherwise set the PPD to key. FIXME:
what to read.

Option-n num
Option--copies=num

print num copies of each page

Option-s duplex-mode
Option--sides=duplex-mode

Specify the number of sheet sides, or, more generally, the Duplex mode (see Appendix A
[Glossary], page 89). The valid values for duplex-mode are:

‘1’
‘simplex’ One page per sheet.

‘2’
‘duplex’ Two pages per sheet, DuplexNoTumble mode.

‘tumble’ Two pages per sheet, DuplexTumble mode.

Not only does this option require Duplex from the printer, but it also enables duplex
features from a2ps (e.g., the margin changes from front pages to back pages etc.).

Chapter 3: Invoking a2ps 22

Option-S key [:value]
Option--setpagedevice=key[:value]

Pass a page device definition to the generated PostScript output. If no value is given, key
is removed from the definitions. Note that several ‘--setpagedevice’ can be accumulated.
For example, command

ubu $ a2ps -SDuplex:true -STumble:true NEWS
[NEWS (plain): 15 pages on 8 sheets]
[Total: 15 pages on 8 sheets] sent to the default printer

prints file ‘report.pre’ in duplex (two sides) tumble (suitable for landscape documents).
This is also valid for delegated files:

a2ps -SDuplex:true -STumble:true a2ps.texi

Page device operators are implementation dependent but they are standardized. See
Section 8.2 [Page Device Options], page 73, for details.

Option--statusdict=key[:value]
Option--statusdict=key[::value]

Pass a statusdict definition to the generated PostScript output. statusdict operators
and variables are implementation dependent; see the documentation of your printer for
details. See Section 8.3 [Statusdict Options], page 73, for details. Several ‘--statusdict’
can be accumulated.
If no value is given, key is removed from the definitions.
With a single colon, pass a call to an operator, for instance:

a2ps --statusdict=setpapertray:1 quicksort.c

prints file ‘quicksort.c’ by using paper from the paper tray 1 (assuming that printer
supports paper tray selection).
With two colons, define variable key to equal value. For instance:

a2ps --statusdict=papertray::1 quicksort.c

produces
/papertray 1 def

in the PostScript.

Option-k
Option--page-prefeed

enable page prefeeding. It consists in positioning the sheet in the printing area while
the PostScript is interpreted (instead of waiting the end of the interpretation of the page
before pushing the sheet). It can lead to an significant speed up of the printing.
a2ps quotes the access to that feature, so that non supporting printers won’t fail.

Option-K
Option--no-page-prefeed

disable page prefeeding.

3.2 Escapes

The escapes are some sequences of characters that will be replaced by their values. They are
very much like variables.

Chapter 3: Invoking a2ps 23

3.2.1 Use of Escapes

They are used in several places in a2ps:

Page markers
Headers, footers, titles and the water mark (see Section 3.1.5 [Headings Options],
page 16), in general to print the name of file, page number etc. On a new sheet
a2ps first draws the water mark, then the content of the first page, then the frame
of the first page, (ditto with the others), and finally the sheet header and footers.
This order must be taken into account for some escapes (e.g., ‘$l.’, ‘$l^’).

Named output
To specify the generic name of the file to produce, or how to access a printer (see
Section 4.5 [Your Printers], page 29).

Delegation
To specify the command associated to a delegation (see Section 4.10 [Your Delega-
tions], page 32).

Table of Content
To specify an index/table of content printed at the end of the job.

Variables in PostScript prologue
To allow the user to change some parameters to your prologues (see Section 8.6
[Designing PostScript Prologues], page 74).

3.2.2 General Structure of the Escapes

All format directives can also be given in format
escape width directive

where

escape In general

‘%’ escapes are related to general information (e.g., the current date, the
user’s name etc.),

‘#’ escapes are related to the output (e.g., the output file name) or to the
options you gave (e.g., the number of virtual pages etc.), or to special
constructions (e.g., enumerations of the files, or tests etc.),

‘$’ escapes are related to the current input file (e.g., its name, its current
page number etc.),

‘\’ introduces classical escaping, or quoting, sequences (e.g., ‘\n’, ‘\f’ etc.).

width Specifies the width of the column to which the escape is printed. There are three
forms for width

‘+paddinginteger’
the result of the expansion is prefixed by the character padding so that
the whole result is as long as integer. For instance ‘$+.10n’ with a file
name ‘$n’=‘foo.c’ gives ‘.....foo.c’.
If no padding is given, ‘ ’ (white space) is used.

‘-paddinginteger’
Idem as above, except that completion is done on the left: ‘$+.10n’
gives ‘foo.c.....’.

Chapter 3: Invoking a2ps 24

‘integer’ which is a short cut for ‘+integer’. For example, escape ‘$5P’ will expand
to something like ‘ 12’.

directive See Section 3.2.3 [Available Escapes], page 23.

3.2.3 Available Escapes

Supported escapes are:

‘\\’ character ‘\’

‘\%’ character ‘%’

‘\$’ character ‘$’

‘\#’ character ‘#’

‘#?cond|if true|if false|’
this may be used for conditional assignment. The separator (presented here as ‘|’)
may be any character. if true and if false may be defined exactly the same way as
regular headers, included escapes and the ‘#?’ construct.
The available tests are:

‘#?1’
‘#?2’
‘#?3’ true if tag 1, 2 or 3 is not empty. See item ‘$t1’ for explanation.

‘#?d’ true if Duplex printing is requested (‘-s2’).

‘#?j’ true if bordering is asked (‘-j’).

‘#?l’ true if printing in landscape mode.

‘#?o’ true if only one virtual page per page (i.e., ‘#v’ is 1).

‘#?p’ a page range has been specified (i.e., ‘#p’ is not empty).

‘#?q’ true if a2ps is in quiet mode.

‘#?r’ true if major is rows (‘--major=rows’).

‘#?v’ true if printing on the back side of the sheet (verso).

‘#?V’ true if verbosity level includes the ‘tools’ flag (See Section 3.1.2 [Global
Options], page 12. option ‘--verbosity’).

‘#!key|in|between|’
Used for enumerations. The separator (presented here as ‘|’) may be any character.
in and between are escapes.
The enumerations may be:

‘#!$’ enumeration of the command line options. In this case in in never used,
but is replaced by the arguments.

‘#!f’ enumeration of the input files in the other they were given.

‘#!F’ enumeration of the input files in the alphabetical order of their names.

‘#!s’ enumeration of the files appearing in the current sheet.

For instance, the escapes ‘The files printed were: #!f|$n|, |.’ evaluated
with input ‘a2ps NEWS main.c -o foo.ps’, gives ‘The files printed were: NEWS,
main.c.’.

Chapter 3: Invoking a2ps 25

As an exception, ‘#!’ escapes use the width as the maximum number of objects to
enumerate if it is positive, e.g., ‘#10!f|$n|, |’ lists only the ten first file names.
If width is negative, then it does not enumerate the -width last objects (e.g.,
‘#-1!f|$n|, |’ lists all the files but the last).

‘${var}’ value of the environment variable var if defined, nothing otherwise.

‘${var:-word}’
if the environment variable var is defined, then its value, otherwise word.

‘${var:+word}’
if the environment variable var is defined, then word, otherwise nothing.

‘$[num]’ value of the numth argument given on the command line. Note that $[0] is the name
under which a2ps has been called.

‘#{key}’ expansion of the value of the variable key if defined, nothing otherwise (see Sec-
tion 4.9 [Your Variables], page 31)

‘#{key:-word}’
if the variable var is defined, then the expansion of its, otherwise word.

‘#{key:+word}’
if the variable var is defined, then word, otherwise nothing.

‘#.’ the extension corresponding to the current output language (e.g. ‘ps’).

‘%*’ current time in 24-hour format with seconds ‘hh:mm:ss’

‘$*’ file modification time in 24-hour format with seconds ‘hh:mm:ss’

‘$#’ the sequence number of the current input file

‘%#’ the total number of files

‘%a’ the localized equivalent for ‘Printed by User Name’. User Name is obtained from
the variable ‘user.name’ (see Section 4.9.2 [Predefined Variables], page 32).

‘%A’ the localized equivalent for ‘Printed by User Name from Host Name’. The vari-
ables ‘user.name’ and ‘user.host’ are used (see Section 4.9.2 [Predefined Variables],
page 32).

‘%c’ trailing component of the current working directory

‘%C’ current time in ‘hh:mm:ss’ format

‘$C’ file modification time in ‘hh:mm:ss’ format

‘%d’ current working directory

‘$d’ directory part of the current file (‘.’ if the directory part is empty).

‘%D’ current date in ‘yy-mm-dd’ format

‘$D’ file modification date in ‘yy-mm-dd’ format

‘%D{string}’
format current date according to string with the strftime(3) function.

‘$D{string}’
format file’s last modification date according to string with the strftime(3) func-
tion.

‘%e’ current date in localized short format (e.g., ‘Jul 4, 76’ in English, or ‘14 Juil 89’
in French).

‘$e’ file modification date in localized short format.

Chapter 3: Invoking a2ps 26

‘%E’ current date in localized long format (e.g., ‘July 4, 76’ in English, or ‘Samedi 14
Juillet 89’ in French).

‘$E’ file modification date in localized long format.

‘$f’ full file name (with directory and suffix).

‘\f’ character ‘\f’ (form feed).

‘#f0’
‘#f9’ ten temporary file names. You can do anything you want with them, a2ps removes

them at the end of the job. It is useful for the delegations (see Section 4.10 [Your
Delegations], page 32) and for the printer commands (see Section 4.5 [Your Printers],
page 29).

‘%F’ current date in ‘dd.mm.yyyy’ format.

‘$F’ file modification date in ‘dd.mm.yyyy’ format.

‘#h’ medium height in PostScript points

‘$l^’ top most line number of the current page

‘$l.’ current line number. To print the page number and the line interval in the right
title, use ‘--right-title="$q:$l^-$l."’.

‘$l#’ number of lines in the current file.

‘%m’ the host name up to the first ‘.’ character

‘%M’ the full host name

‘\n’ the character ‘\n’ (new line).

‘%n’ shortcut for the value of the variable ‘user.login’ (see Section 4.9.2 [Predefined
Variables], page 32).

‘$n’ input file name without the directory part.

‘%N’ shortcut for the value of the variable ‘user.name’ (see Section 4.9.2 [Predefined
Variables], page 32).

‘$N’ input file name without the directory, and without its suffix (e.g., on ‘foo.c’, it will
produce ‘foo’).

‘#o’ name of the output, before substitution (i.e., argument of ‘-P’, or of ‘-o’).

‘#O’ name of the output, after substitution. If output goes to a file, then the name of the
file. If the output is a symbolic printer (see Section 4.5 [Your Printers], page 29),
the result of the evaluation. For instance, if the symbolic printer ‘file’ is defined
as ‘> $n.%.’, then ‘#O’ returns ‘foo.c.ps’ when printing ‘foo.c’ to PostScript. ‘#o’
would have returned ‘file’.

‘#p’ the range of the page to print from this page. For instance if the user asked
‘--pages=1-10,15’, and the current page is 8, then ‘#p’ evaluates to ‘1-3,8’.

‘$p^’ number of the first page of this file appearing on the current sheet. Note that ‘$p.’,
evaluated at the end of sheet, is also the number of the last page of this file appearing
on this sheet.

‘$p-’ interval of the page number of the current file appearing on the current sheet. It is
the same as ‘p^-p.’, if ‘$p^’ and ‘$p.’ are different, otherwise it is equal to ‘$p.’.

‘%p.’ current page number

‘$p.’ page number for this file

Chapter 3: Invoking a2ps 27

‘%p#’ total number of pages printed

‘$p#’ number of pages of the current file

‘$p<’ number of the first page of the current file

‘$p>’ number of the last page of the current file

‘%q’ localized equivalent for ‘Page %p.’

‘$q’ localized equivalent for ‘Page $p.’

‘%Q’ localized equivalent for ‘Page %p./%p#’

‘$Q’ localized equivalent for ‘Page $p./$p#’

‘$s<’ number of the first sheet of the current file

‘%s.’ current sheet number

‘$s.’ sheet number for the current file

‘$s>’ number of the last sheet of the current file

‘%s#’ total number of sheets

‘$s#’ number of sheets of the current file

‘%t’ current time in 12-hour am/pm format

‘$t’ file modification time in 12-hour am/pm format

‘$t1’
‘$t2’
‘$t3’ Content of tag 1, 2 and 3. Tags are pieces of text a2ps fetches in the files, according

to the style. For instance, in mail-folder style, tag 1 is the title of the mail, and
tag 2 its author.

‘%T’ current time in 24-hour format ‘hh:mm’

‘$T’ file modification time in 24-hour format ‘hh:mm’

‘#v’ number of virtual sheets

‘%V’ the version string of a2ps.

‘#w’ medium width in PostScript points

‘%W’ current date in ‘mm/dd/yy’ format

‘$W’ file modification date in ‘mm/dd/yy’ format

Chapter 4: Configuration Files 28

4 Configuration Files

a2ps reads several files before the command line options. In the order, they are:
1. the system configuration file (usually ‘/usr/local/etc/a2ps.cfg’) unless you have defined

the environment variable ‘A2PS_CONFIG’, in which case a2ps reads the file it points to;
2. the user’s home configuration file (‘$HOME/.a2ps/a2psrc’)
3. the local file (‘./.a2psrc’)

Because a2ps needs architecture dependent information (such as the local lpr command)
and architecture independent information (such as the type of your printers), users have found
useful that ‘a2ps.cfg’ be dedicated to architecture dependent information. A sub configuration
file, ‘a2ps-site.cfg’ (see Section 4.1 [Including Configuration Files], page 28) is included from
‘a2ps.cfg’.

The file ‘a2ps.cfg’ is updated when you update a2ps, while ‘a2ps-site.cfg’ is not, to
preserve local definitions.

In the configuration files, empty lines and lines starting with ‘#’ are comments.
The other lines have all the following form:

Topic: Arguments

where Topic: is a keyword related to what you are customizing, and Arguments the customiza-
tion. Arguments may be spread on several lines, provided that the last character of a line to
continue is a ‘\’.

In the following sections, each Topic: is detailed.

4.1 Including Configuration Files

Configuration SettingInclude: file
Include (read) the configuration file. if file is a relative path (i.e., it does not start with
‘/’), then it is relatively to the current configuration file.

This is especially useful for the site specific configuration file ‘etc/a2ps.cfg’: you may tune
your printers etc. in a separate file for easy upgrade of a2ps (and hence of its configuration
files).

4.2 Your Library Path

To define the default library path, you can use:

Configuration SettingLibraryPath: path
Set the library path the path.

Configuration SettingAppendLibraryPath: path
Add path at the end of the current library path.

Configuration SettingPrependLibraryPath: path
Add path at the beginning of the current library path.

Note that for users configuration files, it is better not to set the library path, because the
system’s configuration has certainly been built to cope with your system’s peculiarities. Use
‘AppendLibraryPath:’ and ‘PrependLibraryPath:’.

Chapter 4: Configuration Files 29

4.3 Your Default Options

Configuration SettingOptions: options+
Give a2ps a list of command line options. options+ is any sequence of regular command
line options (see Chapter 3 [Invoking a2ps], page 10).

It is the correct way to define the default behavior you expect from a2ps. If for instance
you want to use Letter as medium, then use:

Options: --medium=Letter

It is exactly the same as always giving a2ps the option ‘--medium=Letter’ at run time.

The quoting mechanism is the same as that of a shell. For instance

Options: --right-title="Page $p" --center-title="Hello World!"
Options: --title="arg ’Jack said \\\"hi\\\"’ has double quotes"

4.4 Your Media

Configuration SettingMedium: name dimensions
Define the medium name to have the dimensions (in PostScript points, i.e., 1/72 of inch).

There are two formats supported:

long in which you must give both the size of the whole sheet, and the size of the
printable area:

A4 for Desk Jets
name w h llx lly urx ury
Medium: A4dj 595 842 24 50 571 818

where wxh are the dimension of the sheet, and the four other stand for lower
left x and y, upper right x and y.

short in which a surrounding margin of 24 points is used
A4
name w h
Medium: A4 595 842

is the same as
A4
name w h
Medium: A4 595 842 24 24 571 818

4.5 Your Printers

A general scheme is used, so that whatever the way you should address the printers on your
system, the interface is still the same. Actually, the interface is so flexible, that you should
understand ‘named destination’ when we write ‘printer’.

Chapter 4: Configuration Files 30

Configuration SettingPrinter: name PPD-key destination
Configuration SettingPrinter: name destination
Configuration SettingPrinter: name PPD-key

Specify the destination of the output when the option ‘-P name’ is given. If PPD-key
is given, declare the printer name to be described by the PPD file ‘PPD-key.ppd’. If
destination is not given, used that of the ‘UnknownPrinter:’.
The destination must be of one of the following forms:

‘| command’
in which case the output is piped into command.

‘> file’ in which case the output is saved into file.

Configuration SettingUnknownPrinter: [PPD-key] destination
Specify the destination of the output when when the option ‘-P name’ is given, but there
is no ‘Printer:’ entry for name.

Configuration SettingDefaultPrinter: [PPD-key] destination
Specify the destination of the output when when the option ‘-d’ (send to default output)
is given.

Escapes expansion is performed on destination (see Section 3.2 [Escapes], page 22). Recall
that ‘#o’ is evaluated to the destination name, i.e., the argument given to ‘-P’.

For instance
My Default Printer is called dominique
DefaultPrinter: | lp -d dominique

‘a2ps foo.c -P bar’ will pipe into ‘lp -d bar’
UnknownPrinter: | lp -d #o

‘a2ps -P foo’ saves into the file ‘foo’
Printer: foo > foo.ps
Printer: wc | wc
Printer: lw | lp -d printer-with-a-rather-big-name

E.g. ‘a2ps foo.c bar.h -P file’ will save into ‘foo.c.ps’
Printer: file > $n.#.

E.g. ‘a2ps foo.c bar.h -P home’ will save into ‘foo.ps’
in user’s home
Printer: home > ${HOME}/$N.#.

Here we address a printer which is not PostScript
Printer: deskj | gs -q -sDEVICE=ljet3d -sOutputFile=- - \

| lpr -P laserwriter -h -l

MS-DOS users, and non-PostScript printer owners should take advantage in getting good
configuration of these entries.

4.6 Your Shortcuts

You can define some kind of ‘Macro Options’ which stand for a set of options.

Chapter 4: Configuration Files 31

Configuration SettingUserOption: shortcut options...
Define the shortcut to be the list of options.... When a2ps is called with ‘-=shortcut’ (or
‘--user-option=shortcut’), consider the list of options....

Examples are
This emulates a line printer: no features at all
call a2ps -=lp to use it
UserOption: lp -1m --pretty-print=plain -B --borders=no

When printing mail, I want to use the right style sheet with strong
highlight level, and stripping ‘useless’ headers.
UserOption: mail -Email -g --strip=1

4.7 Your PostScript magic number

a2ps produces full DSC conformant PostScript (see Appendix A [Glossary], page 89). Adobe
said

Thou shalt start your PostScript DSC conformant files with
%!PS-Adobe-3.0

The bad news is that some printers will reject this header. Then you may change this header
without any worry since the PostScript produced by a2ps is also 100% PostScript level 11.

Configuration SettingOutputFirstLine: magic-number
Specify the header of the produced PostScript file to be magic-number. Typical values
include ‘%!PS-Adobe-2.0’, or just ‘%!’.

4.8 Your Page Labels

In the PostScript file is dropped information on where sheets begin and end, so that post
processing tools know where is the physical page 1, 2 etc. With this information can be also
stored a label, i.e., a human readable text (typically the logical page numbers), which is for
instance what Ghostview shows as the list of page numbers.

a2ps lets you define what you want in this field.

Configuration SettingPageLabelFormat: format
Specify the format to use to label the PostScript pages. format can use Escapes (see
Section 3.2 [Escapes], page 22). Two variables are predefined for this: ‘#{pl.short}’ and
‘#{pl.long}’.

4.9 Your Variables

There are many places in a2ps where one would like to have uniform way of extending things.
It once became clear that variables where needed in a2ps.

1 That is to say, there are no PostScript printers that don’t understand these files.

Chapter 4: Configuration Files 32

4.9.1 Defining Variables

Configuration SettingVariable: key value
Define the escape ‘#{key}’ to be a short cut for value. key must not have any character
from ‘:(){}’.

As as example, here is a variable for psnup, which encloses all the option passing one would
like. Delegations are then easier to write:

Variable: psnup psnup -#v -q #?j|-d|| #?r||-c| -w#w -h#h

It is strongly suggested to follow a ‘.’ (dot) separated hierarchy, starting with:

‘del’ for variables that are related to delegations.

‘pro’ for variables used in prologues (see Section 8.6 [Designing PostScript Prologues],
page 74). Please, specify the name of the prologue (e.g., ‘pro.matrix.gray’).

‘ps’ for variables related to PostScript matters, such as the page label (which is associated
to ps.page_label), the header etc.

‘pl’ for page label formats. See Section 4.8 [Your Page Labels], page 31, the option
‘--page-label’ in Section 3.1.6 [Input Options], page 17.

‘toc’ for toc formats. See the option ‘--toc’ in Section 3.1.6 [Input Options], page 17.

‘user’ for user related information. See Section 4.9.2 [Predefined Variables], page 32.

This naming convention has not fully stabilized. We apologize for the inconvenience this
might cause to users.

4.9.2 Predefined Variables

There are a few predefined variables. The fact that a2ps builds them at startup changes
nothing to their status: they can be modified like any other variable using --define (see Sec-
tion 3.1.2 [Global Options], page 12).

In what follows, there are numbers (i) like this, or (ii) this. It means that a2ps first tries
the solution (i), if a result is obtained (non empty value), this is the value given to the variable.
Otherwise it tries solution (ii), etc. The rationale behind the order is usually from user modifiable
values (e.g. environment variables) through system’s hard coded values (e.g., calls to getpwuid)
and finally arbitrary values.

‘user.comments’
Comments on the user. Computed by (i) the system’s database (the part of pw_
gecos after the first ‘,’), (ii) not defined.

‘user.home’
The user’s home directory. Determined by (i) the environment variable HOME, (ii)
the system’s database (using getpwuid), (iii) the empty string.

‘user.host’
The user’s host name. Assigned from (i) the system (gethostname or uname), (ii)
the empty string.

‘user.login’
The user’s login (e.g. ‘bgates’). Computed by (i) the environment variable
LOGNAME, (ii) the environment variable USERNAME, (iii) the system’s database (using
getpwuid), (iv) the translated string ‘user’.

Chapter 4: Configuration Files 33

‘user.name’
The user’s name (e.g. ‘William Gates’). Computed by (i) the system’s database
(pw_gecos up to the first ‘,’), (ii) capitalized value of the variable ‘user.login’
unless it was the translated string ‘user’, (iii) the translated string ‘Unknown User’.

4.10 Your Delegations

There are some files you don’t really want a2ps to pretty-print, typically page description
files (e.g., PostScript files, roff files, etc.). You can let a2ps delegate the treatment of these
files to other applications. The behavior at run time depends upon the option ‘--delegate’ (see
Section 3.1.6 [Input Options], page 17).

4.10.1 Defining a Delegation

Configuration SettingDelegation: name in:out command
Define the delegation name. It is to be applied upon files of type in when output type
is out2 thanks to command. Both in and out are a2ps type keys such as defined in
‘sheets.map’ (see Section 7.7.3 [The Entry in sheets.map], page 69).

command should produce the file on its standard output. Of course escapes substitution is
performed on command (see Section 3.2 [Escapes], page 22). In particular, command should
use the input file ‘$f’.

In general, people don’t want to pretty-print PostScript files.
Pass the PostScript files to psnup
Delegation: PsNup ps:ps \

psselect #?V||-q| -p#?p|#p|-| $f | \
psnup -#v -q #?j|-d|| #?r||-c| -w#w -h#h

Advantage should be taken from the variables, to encapsulate the peculiarities of the various
programs.

Passes the options to psnup.
The files (in and out) are to be given
Variable: psnup psnup -#v #?V||-q| #?j|-d|| #?r||-c| -w#w -h#h

Passes to psselect for PS page selection
Variable: psselect psselect #?V||-q| -p#?p|#p|-|

In general, people don’t want to pretty-print PostScript files.
Pass the PostScript files to psnup
Delegation: PsNup ps:ps #{psselect} $f | #{psnup}

Temporary file names (‘#f0’ to ‘#f9’) are available for complex commands.
Pass DVI files to dvips.
A problem with dvips is that even on failure it dumps its prologue,
hence it looks like a success (output is produced).
To avoid that, we use an auxiliary file and a conditional call to
psnup instead of piping.
Delegation: dvips dvi:ps #{dvips} $f -o #f0 && #{psnup} #f0

2 Current a2ps only handles PostScript output, i.e. out=‘ps’

Chapter 4: Configuration Files 34

4.10.2 Guide Line for Delegations

First of all, select carefully the applications you will use for the delegations. If a filter is
known to cause problems, try to avoid it in delegations3. As a thumb rule, you should check
that the PostScript generating applications produce files that start by:

%!PS-Adobe-3.0

a2ps needs the ‘%%BeginSetup’-‘%%EndSetup’ section in order to output correctly the page
device definitions. It can happen that your filters don’t output this section. In that case, you
should insert a call to fixps right after the PostScript generation:

########## ROFF files
Pass the roff files to groff. Ask grog how groff should be called.
Use fixps to ensure there is a %%BeginSetup/%%EndSetup section.
Delegation: Groff roff:ps \

eval ‘grog -Tps ’$f’‘ | fixps #?V!!-q! | #{d.psselect} | #{d.psnup}

There are some services expected from the delegations. The delegations you may write should
honor:

the input file
available via the escape ‘$f’. You should be aware that there are people who have
great fun having spaces or dollars in their file names, so you probably should always
use ‘’$f’’. Some other variables are affected. Yes, I know, we need a special
mechanism for ‘’’ itself. Well, we’ll see that later ‘;-)’.

the medium
the dimension of the medium selected by the user are available through ‘#w’ and
‘#h’.

the page layout
the number of virtual pages is ‘#v’.

the page range
the page range (in a form ‘1-2,4-6,10-’ for instance) is available by ‘#p’.

the verbosity level
please, do not make your delegations verbose by default. The silent mode should
always be requested, unless ‘#?V’ is set (see the above example with groff).

If ever you need several commands, do not use ‘;’ to separate them, since it may prevent
detection of failure. Use ‘&&’ instead.

The slogan "the sooner, the better" should be applied here: in the processing chain, it is
better to ask a service to the first application that supports it. An example will make it clear:
when processing a DVI file, dvips knows better the page numbers than psselect would. So
a DVI to PostScript delegation should ask the page selection (‘#p’) to dvips, instead of using
psselect later in the chain. An other obvious reason here is plain efficiency (globally, less data
is processed).

4.10.3 Predefined Delegations

The purpose of this section is not to document all the predefined delegations, for this you
should read the comments in the system configuration file ‘a2ps.cfg’. We just want to explain
some choices, and give hints on how to make the best use of these delegations.

3 Because hiding its use into a2ps just makes it even more difficult to the users to know why
it failed. Let them use it by hand.

Chapter 4: Configuration Files 35

Delegationdvips (DVI to PostScript)
There is a problem when you use a naive implementation of this delegation: landscape
jobs are not recognized, and therefore n-upping generally fails miserably. Therefore, a2ps
tries to guess if the file is landscape by looking for the keyword ‘landscape’ in it, using
strings(1):

Delegation: dvips dvi:ps\
if strings $f | sed 3q | fgrep landscape > /dev/null 2>&1; then \

#{d.dvips} -T#hpt,#wpt $f -o #f0 && #?o|cat|#{d.psnup} -r| #f0;\
else \

#{d.dvips} $f -o #f0 && #{d.psnup} #f0; \
fi

In order to have that rule work correctly, it is expected from the TEX, or LaTEX file to
include something like:

\renewcommand{\printlandscape}{\special{landscape}}
\printlandscape

in the preamble.
We don’t use a pipe because dvips always outputs data (its prologue) even if it fails, what
prevents error detection.

DelegationLaTeX (LaTEX to DVI)
We use a modern version of the shell script texi2dvi, from the package Texinfo, which
runs makeindex, bibtex and latex as many times as needed. You should be aware that
if the file includes files from other directories, it may miss some compilation steps. Other
cases (most typical) are well handled.

4.11 Your Internal Details

There are settings that only meant for a2ps that you can tune by yourself.

Configuration SettingFileCommand: command
The command to run to call file(1) on a file. If possible, make it follow the symbolic
links.

Chapter 5: Library Files 36

5 Library Files

To be general and to allow as much customization as possible, a2ps avoids to hard code its
knowledge (encodings, PostScript routines, etc.), and tries to split it in various files. Hence it
needs a path, i.e., a list of directories, in which it may find the files it needs.

The exact value of this library path is available by ‘a2ps --list=defaults’. Typically its
value is:� �

gargantua ~ $ a2ps --list=defaults
Configuration status of a2ps 4.13
More stuff deleted here
Internals:

verbosity level = 2
file command = /usr/ucb/file -L
temporary directory =
library path =

/inf/soft/infthes/demaille/.a2ps
/usr/local/share/a2ps/sheets
/usr/local/share/a2ps/ps
/usr/local/share/a2ps/encoding
/usr/local/share/a2ps/afm
/usr/local/share/a2ps/printers
/usr/local/share/a2ps
 	

You may change this default path through the configuration files (see Section 4.2 [Your
Library Path], page 28).

If you plan to define yourself some files for a2ps, they should be in one of those directories.

5.1 Documentation Format

In various places a documentation can be given. Since some parts of this document and of
web pages are extracted from documentations, some tags are needed to provide a better layout.
The format is a mixture made out of Texinfo like commands, but built so that quick and easy
processing can be made.

These tags are:

‘code(’text‘)code’
Typeset text like a piece of code. This should be used for keys, variables, options
etc. For instance the documentation of the bold prologue mentions the bw prologue:

Documentation
This style is meant to replace the old option
code(-b)code of a2ps 4.3. It is a copy of the
black and white prologue, but in which all the
fonts are in Bold.
EndDocumentation

‘href(’link‘)href(’text‘)href’
Specifies a hyper text link displayed as text.

Chapter 5: Library Files 37

‘@example’
‘@end example’

They must be alone on the line. The text between these tags is displayed in a code-
like fonts. This should be used for including a piece of code. For instance, in the
documentation of the gnuc style sheet:

documentation is
"Declaration of functions are highlighted"
"emph(only)emph if you start the function name"
"in the first column, and it is followed by an"
"opening parenthesis. In other words, if you"
"write"
"@example"
"int main (void)"
"@end example"
"it won’t work. Write:"
"@example"
"int"
"main (void)"
"@end example"

end documentation

‘@itemize’
‘@item’ text
‘@end itemize’

Typeset a list of items. The opening and closing tags must be alone on the line.

5.2 Map Files

Many things are defined through files. There is a general scheme to associate an object to
the files to use: map files. They are typically used to:
− resolve aliases. For instance the ISO-8859-1 encoding is also called ISO Latin 1, or Latin

1 for short. The ‘encoding.map’ file will map these three names to the same Encoding
Description File.

− cope with broken files systems. For instance, the-one-you-know-I-don’t-need-to-name can-
not handle files named ‘Courier-BoldOblique.afm’: it is the same as ‘Courier-Bold.afm’.
The ‘fonts.map’ file is here to associate a font file name to a font name.

The syntax of these files is:
− any empty line, or any line starting by a ‘#’ is a comment.
− a line with the format

*** path

requests that the file designated by path be included at this point.
− any other line has the format

key value

meaning that when looking for key (e.g., name of a font, an encoding etc.), a2ps should
use value (e.g., font file name, encoding description file name etc.).

The map files used in a2ps are:

‘encoding.map’
Resolving encodings aliases.

Chapter 5: Library Files 38

‘fonts.map’
Mapping font names to font file names.

‘sheets.map’
Rules to decide what style sheet to use.

5.3 Font Files

Even when a PostScript printer knows the fonts you want to use, using these fonts requires
some description files.

5.3.1 Fonts Map File

See Section 5.2 [Map Files], page 37, for a description of the map files. This file associates
the font-key to a font name. For instance:

Courier pcrr
Courier-Bold pcrb
Courier-BoldOblique pcrbo
Courier-Oblique pcrro

associates to font named Courier, the key pcrr. To be recognized, the font name must be exact:
courier and COURIER are not admitted.

5.3.2 Fonts Description Files

There are two kinds of data a2ps needs to use a font:
− the AFM file (‘font-key.afm’), which describes the metrics information corresponding to

font;
− in the case font is not known from the printer, the PFA or PFB file which is down loaded

to the printer. These files are actually the PostScript programs which execution produces
the characters to be drawn on the page, in this font.

5.3.3 Adding More Font Support

a2ps can use as many fonts as you want, provided that you teach it the name of the files
in which are stored the fonts (see Section 5.3.1 [Fonts Map File], page 38). To this end, a very
primitive but still useful shell script is provided: make_fonts_map.sh.

First, you need to find the directories which store the fonts you want to use, and extend the
library path so that a2ps sees those directories. For instance, add:

AppendLibraryPath: /usr/local/share/ghostscript/fonts

Then run make_fonts_map.sh. It should be located in the ‘afm/’ directory of the system’s
a2ps hierarchy. Typically ‘/usr/local/share/a2ps/afm/make_fonts_map.sh’.

This script asks a2ps for the library path, wanders in this path collecting AFM files, and
digging information in them.

Once the script has finished, a file ‘fonts.map.new’ was created. Check its integrity, and if it’s
correct, either replace the old ‘fonts.map’ with it, or rename ‘fonts.map.new’ as ‘fonts.map’
and place it higher in the the library path (for instance in your ‘~/.a2ps/’ directory).

Chapter 5: Library Files 39

5.4 Style Sheet Files

The style sheets are defined in various files. See see Chapter 7 [Pretty Printing], page 45 for
the structure of these files. As for most other features, there is main file, a road map, which
defines in which condition a style sheet should be used (see Section 5.2 [Map Files], page 37).
This file is ‘sheets.map’.

Its format is simple:
style-key: patterns

or
include(file)

The patterns need not be on separate lines. There are two kinds of patterns:

/pattern/flags
if the current file name matches pattern, then select style style-key (i.e. file ‘style-
key.ssh’).

<pattern>flags
if the result of a call to file(1) matches pattern, then select style style-key.

Currently flags can only be ‘i’, standing for an insentive match. Please note that the matching
is not truly case insensitive: rather, a lower case version of the string is compared to the pattern
as is, i.e., the pattern should itself be lower case.

The special style-key ‘binary’ tells a2ps to consider that the file should not be printed, and
will be ignored, unless option ‘--print-anyway’ is given.

If a style name can’t be found, the plain style is used.
The map file is read bottom up, so that the “last” match is honored.
Two things are to retain from this:

1. if the file is presented through stdin, then a2ps will run file(1). However, unless you
specify a fake file name with ‘--stdin’, pattern matching upon the name is turn off. In
general you can expect correct delegations, but almost never pretty printing.

2. if file is wrong on some files, a2ps may use bad style sheets. In this case, do try option
‘--guess’, compare it with the output of file, and if the culprit is file, go and complain
to your system administrator :-), or fix it by defining your own filename pattern matching
rules.

Consider the case of Texinfo files as an example (the language in which this documentation
is written). Files are usually named ‘foo.texi’, ‘bar.txi’, or even ‘baz.texinfo’. file(1) is
able to recognize Texinfo files:� �
doc % file a2ps.texi
a2ps.texi: Texinfo source text
 	
Therefore the sheets.map would look like:

Texinfo files
texinfo: /*.txi/ /*.texi/ /*.texinfo/

<Texinfo source*>

Chapter 6: Encodings 40

6 Encodings

a2ps is trying to support the various usual encodings that its users use. This chapter presents
what an encoding is, how the encodings support is handled within a2ps, and some encodings it
supports.

6.1 What is an Encoding

This section is actually taken from the web pages of Alis Technologies inc.1

Document encoding is the most important but also the most sensitive and explosive topic in
Internet internationalization. It is an essential factor since most of the information distributed
over the Internet is in text format. But the history of the Internet is such that the predominant
- and in some cases the only possible - encoding is the very limited ASCII, which can represent
only a handful of languages, only three of which are used to any great extent: English, Indonesian
and Swahili.

All the other languages, spoken by more than 90% of the world’s population, must fall back
on other character sets. And there is a plethora of them, created over the years to satisfy writing
constraints and constantly changing technological limitations. The ISO international character
set registry contains only a small fraction; IBM’s character registry is over three centimeters
thick; Microsoft and Apple each have a bunch of their own, as do other software manufacturers
and editors.

The problem is not that there are too few but rather too many choices, at least whenever
Internet standards allow them. And the surplus is a real problem; if every Arabic user made his
own choice among the three dozen or so codes available for this language, there is little likelihood
that his "neighbor" would do the same and that they would thus be able to understand each
other. This example is rather extreme, but it does illustrate the importance of standards in
the area of internationalization. For a group of users sharing the same language to be able to
communicate,
1. the code used in the shared document must always be identified (labeling)
2. they must agree on a small number of codes - only one, if possible (standards);
3. their software must recognize and process all codes (versatility)

Certain character sets stand out either because of their status as an official national or
international standard, or simply because of their widespread use.

First off, there is the ISO 8859 standards series that standardize a dozen character sets that
are useful for a large number of languages using the Latin, Cyrillic, Arabic, Greek and Hebrew
alphabets. These standards have a limited range of application (8 bits per character, a maximum
of 190 characters, no combining) but where they suffice (as they do for 10 of the 20 most widely
used languages), they should be used on the Internet in preference to other codes. For all other
languages, national standards should preferably be chosen or, if none are available, a well-known
and widely-used code should be the second choice.

Even when we limit ourselves to the most widely used standards, the overabundance remains
considerable, and this significantly complicates life for truly international software developers
and users of several languages, especially when such languages can only be represented by a
single code. It was to resolve this problem that both Unicode and the ISO 10646 International
standard were created. Two standards? Oh no! Their designers soon realized the problem and
were able to cooperate to the extent of making the character set repertoires and coding identical.

1 http://www.alis.com/

http://www.alis.com/

Chapter 6: Encodings 41

ISO 10646 (and Unicode) contain over 30,000 characters capable of representing most of the
living languages within a single code. All of these characters, except for the Han (Chinese
characters also used in Japanese and Korean), have a name. And there is still room to encode
the missing languages as soon as enough of the necessary research is done. Unicode can be used
to represent several languages, using different alphabets, within the same electronic document.

6.2 Encoding Files

The support of the encodings in a2ps is completely taken out of the code. That is to
say, adding, removing or changing anything in its support for an encoding does not require
programming, nor even being a programmer.

See Section 6.1 [What is an Encoding], page 40, if you want to know more about this.

6.2.1 Encoding Map File

See Section 5.2 [Map Files], page 37, for a description of the map files.
The meaningful lines of the ‘encoding.map’ file have the form:

alias key
iso-8859-1 latin1
latin1 latin1
l1 latin1

where

alias specifies any name under which the encoding may be used. It influences the option
‘--encoding’, but also the encodings dynamically required, as for instance in the
mail style sheet (support for MIME).
When encoding is asked, the lower case version of encoding must be equal to alias.

key specifies the prefix of the file describing the encoding (‘key.edf’, Section 6.2.2 [En-
coding Description Files], page 41).

6.2.2 Encoding Description Files

The encoding description file describing the encoding key is named ‘key.edf’. It is subject
to the same rules as any other a2ps file:
− please make the name portable: alpha-numerical, at most 8 characters,
− empty lines and lines starting by ‘#’ are ignored.

The entries are

‘Name:’ Specifies the full name of the encoding. Please, try to use the official name if there
is one.

Name: ISO-8859-1

‘Documentation/EndDocumentation’
Introduces the documentation on the encoding (see Section 5.1 [Documentation
Format], page 36). Typical informations expected are the other important names
this encoding has, and the languages it covers.

Chapter 6: Encodings 42

Documentation
Also known as ISO Latin 1, or Latin 1. It is a superset
of ASCII, and covers most West-European languages.
EndDocumentation

‘Substitute:’
Introduces a font substitution. The most common fonts (e.g., Courier, Times-
Roman...) do not support many encodings (for instance it does not support Latin
2). To avoid that Latin 2 users have to replace everywhere calls to Courier, a2ps
allows to specify that whenever a font is called in an encoding, then another font
should be used.
For instance in ‘iso2.edf’ one can read:

Fonts from Ogonkify offer full support of ISO Latin 2
Substitute: Courier Courier-Ogonki
Substitute: Courier-Bold Courier-Bold-Ogonki
Substitute: Courier-BoldOblique Courier-BoldOblique-Ogonki
Substitute: Courier-Oblique Courier-Oblique-Ogonki

‘Default:’
Introduces the name of the font that should be used when a font (not substituted
as per the previous item) is called but provides to poor a support of the encoding.
The Courier equivalent is the best choice.

Default: Courier-Ogonki

‘Vector:’ Introduces the PostScript encoding vector, that is a list of the 256 PostScript names
of the characters. Note that only the printable characters are named in PostScript
(e.g., ‘bell’ in ASCII (^G) should not be named). The special name ‘.notdef’ is to
be used when the character is not printable.
Warning. Make sure to use real, official, PostScript names. Using names such as
‘c123’ may be the sign you use unusual names. On the other hand PostScript names
such as ‘afii8879’ are common.

6.2.3 Some Encodings

Most of the following information is a courtesy of Alis Technologies inc.2 and of Roman
Czyborra (zcyborra@cs.tu-berlin.de)’s page about The ISO 8859 Alphabet Soup3. See Sec-
tion 6.1 [What is an Encoding], page 40, is an instructive presentation of the encodings.

The known encodings are:

EncodingASCII (‘ascii.edf’)
US-ASCII.

EncodingHPRoman (‘hp.edf’)
The 8 bits Roman encoding for HP.

EncodingIBM-CP437 (‘ibm-cp437.edf’)
This encoding is meant to be used for PC files with drawing lines.

2 http://www.alis.com/
3 http://czyborra.com/charsets/

http://www.alis.com/
http://czyborra.com/charsets/

Chapter 6: Encodings 43

EncodingIBM-CP850 (‘ibm-cp850.edf’)
Several characters may be missing, especially Greek letters and some mathematical sym-
bols.

EncodingISO-8859-1 (‘iso1.edf’)
The ISO-8859-1 character set, often simply referred to as Latin 1, covers most West Euro-
pean languages, such as French, Spanish, Catalan, Basque, Portuguese, Italian, Albanian,
Rhaeto-Romanic, Dutch, German, Danish, Swedish, Norwegian, Finnish, Faroese, Ice-
landic, Irish, Scottish, and English, incidentally also Afrikaans and Swahili, thus in effect
also the entire American continent, Australia and the southern two-thirds of Africa. The
lack of the ligatures Dutch IJ, French OE and ,,German“ quotation marks is considered
tolerable.
The lack of the new C=-resembling Euro currency symbol U+20AC has opened the dis-
cussion of a new Latin0.

EncodingISO-8859-2 (‘iso2.edf’)
The Latin 2 character set supports the Slavic languages of Central Europe which use the
Latin alphabet. The ISO-8859-2 set is used for the following languages: Czech, Croat,
German, Hungarian, Polish, Romanian, Slovak and Slovenian.
Support is provided thanks to Ogonkify.

EncodingISO-8859-3 (‘iso3.edf’)
This character set is used for Esperanto, Galician, Maltese and Turkish.
Support is provided thanks to Ogonkify.

EncodingISO-8859-4 (‘iso4.edf’)
Some letters were added to the ISO-8859-4 to support languages such as Estonian, Latvian
and Lithuanian. It is an incomplete precursor of the Latin 6 set.
Support is provided thanks to Ogonkify.

EncodingISO-8859-5 (‘iso5.edf’)
The ISO-8859-5 set is used for various forms of the Cyrillic alphabet. It supports Bulgar-
ian, Byelorussian, Macedonian, Serbian and Ukrainian.
The Cyrillic alphabet was created by St. Cyril in the 9th century from the upper case
letters of the Greek alphabet. The more ancient Glagolithic (from the ancient Slav glagol,
which means "word"), was created for certain dialects from the lower case Greek letters.
These characters are still used by Dalmatian Catholics in their liturgical books. The kings
of France were sworn in at Reims using a Gospel in Glagolithic characters attributed to
St. Jerome.
Note that Russians seem to prefer the KOI8-R character set to the ISO set for computer
purposes. KOI8-R is composed using the lower half (the first 128 characters) of the
corresponding American ASCII character set.

EncodingISO-8859-7 (‘iso7.edf’)
ISO-8859-7 was formerly known as ELOT-928 or ECMA-118:1986. It is meant for modern
Greek.

EncodingISO-8859-9 (‘iso9.edf’)
The ISO 8859-9 set, or Latin 5, replaces the rarely used Icelandic letters from Latin 1 with
Turkish letters.
Support is provided thanks to Ogonkify.

Chapter 6: Encodings 44

EncodingISO-8859-10 (‘iso10.edf’)
Latin 6 (or ISO-8859-10) adds the last letters from Greenlandic and Lapp which were
missing in Latin 4, and thereby covers all Scandinavia.
Support is provided thanks to Ogonkify.

EncodingISO-8859-13 (‘iso13.edf’)
Latin7 (ISO-8859-13) is going to cover the Baltic Rim and re-establish the Latvian (lv)
support lost in Latin6 and may introduce the local quotation marks.
Support is provided thanks to Ogonkify.

EncodingISO-8859-15 (‘iso15.edf’)
The new Latin9 nicknamed Latin0 aims to update Latin1 by replacing some less needed
symbols (some fractions and accents) with forgotten French and Finnish letters and placing
the U+20AC Euro sign in the cell of the former international currency sign.
Very few fonts yet offer the possibility to print the Euro sign.

EncodingKOI8 (‘koi8.edf’)
KOI-8 (+) is a subset of ISO-IR-111 that can be used in Serbia, Belarus etc.

EncodingMS-CP1250 (‘ms-cp1250.edf’)
Microsoft’s CP-1250 encoding (aka CeP).

EncodingMacintosh (‘mac.edf’)
For the Macintosh encoding. The support is not sufficient, and a lot of characters may be
missing at the end of the job (especially Greek letters).

Chapter 7: Pretty Printing 45

7 Pretty Printing

The main feature of a2ps is its pretty-printing capabilities. Two different levels of pretty
printing can be reached:
− basic (normal highlight level) in which what you print is what you wrote.
− string (heavy highlight level), in which in general, some keywords are replaced by a Symbol

character which best represents them. For instance, in most languages ‘<=’ and ‘>=’ will be
replaced by the corresponding single character from the font Symbol.

Note that the difference is up to the author of the style sheet.

7.1 Syntactic limits

a2ps is not a powerful syntactic pretty-printer: it just handles lexical structures, i.e., if in
your favorite language

IF IF == THEN THEN THEN := ELSE ELSE ELSE := IF

is legal, then a2ps is not the tool you need. Indeed a2ps just looks for some keywords, or some
sequences.

7.2 Known Style Sheets

Style Sheet68000 (‘68000.ssh’)
Althought designed at the origin for the 68k’s assembler, this style sheet seems to handle
rather well other dialects.

Style Sheeta2ps configuration file (‘a2psrc.ssh’)
Meant to print files such as ‘a2ps.cfg’, or ‘.a2ps/a2psrc’, etc.

Style Sheeta2ps style sheet (‘ssh.ssh’)
Second level of highligthing (option ‘-g’)) substitutes the LaTeX symbols.

Style SheetAda (‘ada.ssh’)
This style sheets cover Ada 95. If you feel the need for Ada 83, you’ll have to design
another style sheet.

Style SheetASN.1 (‘asn1.ssh’)
Written by Philippe Coucaud. ASN.1 (Abstract Syntax Notation One) is used to define
the protocol data units (PDUs) of all application layer protocols to date.

Style SheetAutoconf (‘autoconf.ssh’)
Suitable for both configure.in and library m4 files.

Style SheetAWK (‘awk.ssh’)
Written by Edward Arthur. This style is devoted to the AWK pattern scanning and
processing language. It is supposed to support classic awk, nawk and gawk.

Chapter 7: Pretty Printing 46

Style SheetB (‘b.ssh’)
Written by Philippe Coucaud. B is a formal specification method mostly used to describe
critical systems. It is based on the mathematical sets theory.

Style SheetBC (‘bc.ssh’)
bc is an arbitrary precision calculator language.

Style SheetBourne Shell (‘sh.ssh’)
Some classical program names, or builtin, are highlighted in the second level of pretty-
printing.

Style SheetC (‘c.ssh’)
This style does not highlight the function definitions. Another style which highlights them,
GNUish C, is provided (gnuc.ssh). It works only if you respect some syntactic conventions.

Style SheetC Shell (‘csh.ssh’)
Written by Jim Diamond. Some classical program names, and/or builtins, are highlighted
in the second level of pretty-printing.

Style SheetC++ (‘cxx.ssh’)
Should handle all known variations of C++. Most declarations (classes etc.) are not
highlighted as they should be. Please, step forward!

Style SheetCAML (‘caml.ssh’)
This style is obsolete: use OCaml instead.

Style SheetChangeLog (‘chlog.ssh’)
This style covers the usual ChangeLog files.

Style SheetClaire (‘claire.ssh’)
Claire is a high-level functional and object-oriented language with advanced rule processing
capabilities. It is intended to allow the programmer to express complex algorithms with
fewer lines and in an elegant and readable manner.
To provide a high degree of expressivity, Claire uses:
− A very rich type system including type intervals and second-order types (with dual

static/dynamic typing),
− Parametric classes and methods,
− An object-oriented logic with set extensions,
− Dynamic versioning that supports easy exploration of search spaces.

To achieve its goal of readability, Claire uses
− set-based programming with an intuitive syntax,
− simple-minded object-oriented programming,
− truly polymorphic and parametric functional programming,
− a powerful-yet-readable extension of DATALOG to express logical conditions,
− an entity-relation approach with explicit relations, inverses, unknown values and re-

lational
− operations.

More information on claire can be found on claire home page1.

1 http://www.ens.fr/~laburthe/claire.html

http://www.ens.fr/~laburthe/claire.html

Chapter 7: Pretty Printing 47

Style SheetCommon Lisp (‘clisp.ssh’)
Written by Juliusz Chroboczek. It is not very clear what should be considered as a
‘keyword’ in Common Lisp. I like binders, control structures and declarations to be
highlighted, but not assignments.
Names of defstructs are not highlighted because this would not work with defstruct options.

Style SheetCoq Vernacular (‘coqv.ssh’)
This style is devoted to the Coq v 5.10 vernacular language.

Style SheetCORBA IDL (‘cidl.ssh’)
Written by Bob Phillips. A first attempt at a style sheet for OMG CORBA IDL. I believe I
captured all the keywords for CORBA 2.2 IDL. I also stole code from gnuc.ssh to print the
method names in bold face. I’m not sure I quite like my own choices for Keyword strong
and Keyword, so I’m looking for feedback. Note that, as with gnuc.ssh, for a method
name to be noted as such, the left parenthesis associated with the argument list for the
method must appear on the same line as the method name.

Style SheetCPP (‘cpp.ssh’)
C traditional preprocessor handling, mostly meant to be inherited.

Style Sheetdc shell (‘dc_shell.ssh’)
Written by Philippe Le Van. Synopsys Design Compiler is a synthesis tool used by elec-
tronic companies for the design of their chips. This sheet is very incomplete, we have a
lot of keywords to add, eventually options to highlight... The Label strong style is used
for commands which change the design.

Style SheetEiffel (‘eiffel.ssh’)
Eiffel is an object oriented language that also includes a comprehensive approach to soft-
ware construction: a method.
The language itself is not just a programming language but also covers analysis, design
and implementation.
Heavy highlight uses symbols to represent common math operators.

Style SheetEmacs Lisp (‘elisp.ssh’)
Written by Didier Verna. This style sheet includes support for some extensions dumped
with XEmacs.

Style SheetEncapsulated PostScript (‘eps.ssh’)
Illegal PostScript operators are highlighted as Errors.

Style SheetExtended Tcl (‘tclx.ssh’)
Written by Phil Hollenback. Extensions to plain Tcl.

Style SheetFortran (‘fortran.ssh’)
Written by Denis Girou, Alexander Mai. There are several Fortran dialects, depending
whether, on the one hand, you use Fortran 77 or Fortran 90/95, and, on the other hand,
Fixed form comments, or Free form comments.
The style sheets for77kwds and for90kwds implements keywords only, while the style
sheets for-fixed and for-free implements comments only.
This style sheet tries to support any of the various flavors (Fortran 77/90/95, fixed or free
form). For more specific uses, you should use either:

Chapter 7: Pretty Printing 48

− for77-fixed, for Fortran 77 fixed form,
− for77-free, for Fortran 77 free form,
− for90-fixed, for Fortran 90/95 fixed form,
− for90-free, for Fortran 90/95 free form.

Style SheetFortran 77 Fixed (‘for77-fixed.ssh’)
Written by Denis Girou, Alexander Mai. Dedicated to Fortran 77 in fixed form, i.e.,
comments are lines starting with c, C, or *, and only those lines are comments.

Style SheetFortran 77 Free (‘for77-free.ssh’)
Written by Denis Girou, Alexander Mai. Dedicated to Fortran 77 in free form, i.e.,
comments are introduced by ! anywhere on the line, and nothing else is a comment.

Style SheetFortran 77 Keywords (‘for77kwds.ssh’)
Written by Denis Girou, Alexander Mai. This sheet implements only Fortran 77 keywords,
and avoids implementing comments support. This is to allow for implementation of either
fixed or free source form.
See the documentation of the style sheet fortran for more details.

Style SheetFortran 90 Fixed (‘for90-fixed.ssh’)
Written by Denis Girou, Alexander Mai. Dedicated to Fortran 90/95 in fixed form, i.e.,
comments are lines starting with c, C, or *, and only those lines are comments.

Style SheetFortran 90 Free (‘for90-free.ssh’)
Written by Denis Girou, Alexander Mai. Dedicated to Fortran 90/95 in free form, i.e.,
comments are introduced by ! anywhere on the line, and nothing else is a comment.

Style SheetFortran 90 Keywords (‘for90kwds.ssh’)
Written by Denis Girou, Alexander Mai. This sheet implements the superset which Fortran
90 and Fortran 95 provide over Fortran 77.
See the documentation of the style sheet fortran for more details.

Style SheetFortran Fixed (‘for-fixed.ssh’)
Written by Denis Girou, Alexander Mai. Implements comments of Fortran in fixed form,
i.e., comments are lines starting with c, C, or *, and only those lines are comments. No
other highlighting is done.
See the documentation of the style sheet fortran for more details.

Style SheetFortran Free (‘for-free.ssh’)
Written by Denis Girou, Alexander Mai. Dedicated to Fortran in free form, i.e., comments
are introduced by ! anywhere on the line, and nothing else is a comment.

Style SheetGNUish C (‘gnuc.ssh’)
Declaration of functions are highlighted only if you start the function name in the first
column, and it is followed by an opening parenthesis. In other words, if you write

int main (void)

it won’t work. Write:
int
main (void)

Chapter 7: Pretty Printing 49

Style SheetGNUMakefile (‘gmake.ssh’)
Written by Alexander Mai. Special tokens of GNUmakefiles and non terminal declarations
are highlighted.

Style SheetHaskell (‘haskell.ssh’)
Written by Ilya Beylin. Haskell: non-strict functional programming language
http::/www.haskell.org/

Style SheetHTML (‘html.ssh’)
Written by Wesley J. Chun. This style is meant to pretty print HTML source files, not
to simulate its interpretation (i.e., ‘<bold>foo</bold>’ does not print ‘foo’ in bold). If
you really meant to print the result of the HTML file interpreted, then you should turn
the delegations on, and make sure ‘a2ps’ has HTML delegations.

Style SheetIDL (‘idl.ssh’)
Written by Robert S. Mallozzi, Manfred Schwarb. Style sheet for IDL 5.2 (Interactive
Data Language). Obsolete routines are not supported. http://www.rsinc.com.

Style SheetInstallShield 5 (‘is5rul.ssh’)
Written by Alex. InstallShield5 TM RUL script.

Style SheetJava (‘java.ssh’)
Written by Steve Alexander. Documentation comments are mapped to strong comments,
and any other comment is plain comment.

Style SheetJavaScript (‘js.ssh’)
Written by Scott Pakin. Keywords used are everything listed in the Client-Side JavaScript
Reference 1.3, plus "undefined" (why isn’t that listed?) and "prototype". I omitted
the semi-standard a2ps optional operators for equality, because JavaScript’s use of both
strict- and non-strict equality might ambiguate the output. Finally, regular expressions
are formatted like strings.

Style SheetLACE (‘lace.ssh’)
This is meant for the Eiffel equivalent of the Makefiles.

Style SheetLex (‘lex.ssh’)
In addition to the C constructs, it highlights the declaration of states, and some special
‘%’ commands.

Style SheetLout (‘lout.ssh’)
Written by Jean-Baptiste Nivoit. This is the style for Lout files.

Style SheetMail Folder (‘mail.ssh’)
To use from elm and others, it is better to specify ‘-g -Email’, since the file sent to printer
is no longer truly a mail folder. This style also suits to news. ‘--strip’ options are also
useful (they strip "useless" headers).
Whenever the changes of encoding are clear, a2ps sets itself the encoding for the parts
concerned.
Tag 1 is the subject, and Tag 2 the author of the mail/news.
Note: This style sheet is very difficult to write. Please don’t report behavior you don’t
like. Just send me improvements, or write a Bison parser for mails.

Chapter 7: Pretty Printing 50

Style SheetMakefile (‘make.ssh’)
Special tokens, and non terminal declarations are highlighted.

Style SheetManagement Information Base (‘mib.ssh’)
Written by Kelly Wiles. The MIB file is of ASN.1 syntax.

Style SheetMaple (‘maple.ssh’)
Written by Richard J Mathar. Some classical program names, and/or builtins, are high-
lighted in the second level of pretty-printing.

Style SheetMATLAB 4 (‘matlab4.ssh’)
Written by Marco De la Cruz. Note that comments in the code should have a space after
the %.

Style SheetModula 2 (‘modula2.ssh’)
Written by Peter Bartke.

Style SheetModula 3 (‘modula3.ssh’)
Modula-3 is a member of the Pascal family of languages. Designed in the late 1980s at
Digital Equipment Corporation and Olivetti, Modula-3 corrects many of the deficiencies of
Pascal and Modula-2 for practical software engineering. In particular, Modula-3 keeps the
simplicity of type safety of the earlier languages, while providing new facilities for exception
handling, concurrency, object-oriented programming, and automatic garbage collection.
Modula-3 is both a practical implementation language for large software projects and an
excellent teaching language.
This sheet was designed based on Modula 3 home page2.

Style Sheeto2c (‘o2c.ssh’)

Style SheetOberon (‘oberon.ssh’)
Created by N. Wirth, Oberon is the successor of the Pascal and Modula-2 family of
programming languages. It was specifically designed for systems programming, and was
used to create the Oberon system in cooperation with J. Gutknecht. A few years later,
the Oberon language was extended with additional object-oriented features to result in
the programming language Oberon-2.
Implementation of the sheet based on The Oberon Reference Site3.

Style SheetObjective C (‘objc.ssh’)
Written by Paul Shum.

Style SheetOCaml (‘ocaml.ssh’)
Written by Markus Mott. This style should also suit other versions of ML (caml light,
SML etc.).

Style SheetOCaml Yacc (‘mly.ssh’)
Written by Jean-Baptiste Nivoit. Should handle CAML Special Light parser files.

Style SheetOctave (‘octave.ssh’)
Written by C.P. Earls.

2 http://www.research.digital.com/SRC/modula-3/html/home.html
3 http://www.math.tau.ac.il/~laden/Oberon.html

http://www.research.digital.com/SRC/modula-3/html/home.html
http://www.math.tau.ac.il/~laden/Oberon.html

Chapter 7: Pretty Printing 51

Style SheetOracle parameter file (‘initora.ssh’)
Written by Pierre Mareschal. For init.ora parameter files.

Style SheetOracle PL/SQL (‘plsql.ssh’)
Written by Pierre Mareschal. This style is to be checked.

Style SheetOracle SQL (‘sql.ssh’)
Written by Pierre Mareschal. a2ps-sql Pretty Printer Version 1.0.0 beta - 18-MAR-97 For
comments, support for – /*..*/ and //. This style is to be checked.

Style SheetOracle SQL-PL/SQL-SQL*Plus (‘oracle.ssh’)
Written by Pierre Mareschal. 18-MAR-97 For comments, support for – /*..*/ and //.
This style is to be checked.

Style SheetPascal (‘pascal.ssh’)
The standard Pascal is covered by this style. But some extension have been added too,
hence modern Pascal programs should be correctly handled. Heavy highlighting maps
mathematical symbols to their typographic equivalents.

Style SheetPerl (‘perl.ssh’)
Written by Denis Girou. As most interpreted languages, Perl is very free on its syntax,
what leads to significant problems for a pretty printer. Please, be kind with our try. Any
improvement is most welcome.

Style SheetPostScript (‘ps.ssh’)
Only some keywords are highlighted, because otherwise listings are quickly becoming a
big bold spot.

Style SheetPostScript Printer Description (‘ppd.ssh’)
Support for Adobe’s PPD files.

Style SheetPov-Ray (‘pov.ssh’)
Written by Jean-Baptiste Nivoit. Should handle Persistence Of Vision input files.

Style SheetPreScript (‘pre.ssh’)
This style defines commands in the canonic syntax of a2ps. It is meant to be used either
as an input language, and to highlight the table of contents etc.
It can be a good choice of destination language for people who want to produce text to
print (e.g. pretty-printing, automated documentation etc.) but who definitely do not
want to learn PostScript, nor to require the use of LaTeX.

Style SheetPreTeX (‘pretex.ssh’)
This style sheets provides LaTeX-like commands to format text. It is an alternative to the
PreScript style sheet, in which formating commands are specified in a more a2ps related
syntax.
It provides by the use of LaTeX like commands, a way to describe the pages that this
program should produce.

Style SheetProlog (‘prolog.ssh’)
Help is needed on this sheet.

Chapter 7: Pretty Printing 52

Style SheetPromela (‘promela.ssh’)
There is no way for this program to highlight send and receive primitives.

Style SheetPython (‘python.ssh’)
Python is an easy to learn, powerful programming language. It has efficient high-level data
structures and a simple but effective approach to object-oriented programming. Python’s
elegant syntax and dynamic typing, together with its interpreted nature, make it an ideal
language for scripting and rapid application development in many areas on most platforms.
The Python interpreter and the extensive standard library are freely available in source
or binary form for all major platforms from the Python web site4, and can be freely
distributed.
The same site also contains distributions of and pointers to many free third party Python
modules, programs and tools, and additional documentation.
The Python interpreter is easily extended with new functions and data types implemented
in C or C++ (or other languages callable from C). Python is also suitable as an extension
language for customizable applications.

Style SheetReference Card (‘card.ssh’)
This style sheet is meant to process help messages generated by Unix applications. It
highlights the options (-short or –long), and their arguments. Normal use of this style
sheet is through the shell script card (part of the a2ps package), but a typical hand-driven
use is:

program --help | a2ps -Ecard

Style SheetREXX (‘rexx.ssh’)
Written by Alexander Mai. This style sheet supports REXX. You can get information
about REXX from the REXX Language Association5.

Style SheetSather (‘sather.ssh’)
Sather is an object oriented language designed to be simple, efficient, safe, flexible and
non-proprietary. One way of placing it in the ‘space of languages’ is to say that it aims
to be as efficient as C, C++, or Fortran, as elegant as and safer than Eiffel, and support
higher-order functions and iteration abstraction as well as Common Lisp, CLU or Scheme.
Implementation of the sheet based on the Sather home page6.
Heavy highlighting uses symbols for common mathematical operators.

Style SheetScheme (‘scheme.ssh’)
This style sheet is looking for a maintainer and/or comments.

Style SheetSDL-88 (‘sdl88.ssh’)
Written by Jean-Philippe Cottin. –strip-level=2 is very useful: it cancels the graphical
information left by graphic editors. Only the pure specification is then printed.

Style SheetSed (‘sed.ssh’)
Comments and labels are highlighted. Other ideas are welcome! A lot of work is still
needed.

4 http://www.python.org
5 http://www.rexxla.org
6 http://www.icsi.berkeley.edu/~sather/index.html

http://www.python.org
http://www.rexxla.org
http://www.icsi.berkeley.edu/~sather/index.html

Chapter 7: Pretty Printing 53

Style SheetShell (‘shell.ssh’)
This style sheet is not meant to be used directly, but rather an as ancestor for shell style
sheets.

Style SheetSQL 92 (‘sql92.ssh’)
Written by Pierre Mareschal. 18-MAR-97 This style is to be checked.

Style SheetStandard ML (‘sml.ssh’)
Written by Franklin Chen, Daniel Wang. This style sheet takes advantage of the Symbol
font to replace many ASCII operators with their natural graphical representation. This
is enabled only at heavy highlighting.

Style SheetSymbols (‘symbols.ssh’)
This style sheet should be a precursor for any style sheet which uses LaTeX like symbols.

Style SheetTC Shell (‘tcsh.ssh’)
Written by Jim Diamond. C shell with file name completion and command line editing.

Style SheetTeX (‘tex.ssh’)
Written by Denis Girou. This is the style for (La)TeX files. It’s mainly useful for people
who develop (La)TeX packages. With ‘-g’, common mathematical symbols are represented
graphically.

Style SheetTexinfo (‘texinfo.ssh’)
Heavy highlighting prints the nodes on separate pages which title is the name of the node.

Style SheetTeXScript (‘texscript.ssh’)
TeXScript is the new name of what used to be called PreScript. New PreScript has pure
a2ps names, PreTeX has pure TeX names, and TeXScript mixes both.

Style SheetTiger (‘tiger.ssh’)
Tiger is a toy language that serves as example of the book Modern Compiler Implemen-
tation7 by Andrew W. Appel.

Style Sheettk (‘tk.ssh’)
Written by Larry W. Virden. Since everything, or almost, is a string, what is printed is
not always what you would like.

Style SheetTool Command Language (‘tcl.ssh’)
Written by Larry W. Virden. Since everything, or almost, is a string, what is printed is
not always what you would like.

Style SheetUnified Diff (‘udiff.ssh’)
This style is meant to be used onto the output unidiffs, that is to say output from ‘diff
-u’.
Typical use of this style is:

diff -u old new | a2ps -Eudiff

The prologue diff helps to highlight the differences (‘a2ps -Ewdiff --prologue=diff’).

7 http://www.cs.princeton.edu/~appel/modern/

http://www.cs.princeton.edu/~appel/modern/

Chapter 7: Pretty Printing 54

Style SheetUnity (‘unity.ssh’)
Written by Jean-Philippe Cottin. The graphic conversion of the symbols (option ‘-g’) is
nice.

Style SheetVERILOG (‘verilog.ssh’)
Written by Edward Arthur. This style is devoted to the VERILOG hardware description
language.

Style SheetVHDL (‘vhdl.ssh’)
Written by Thomas Parmelan. Non-textual operators are not highlighted. Some logical
operators are printed as graphical symbols in the second level of pretty-printing.

Style SheetVisual Basic for Applications (‘vba.ssh’)
Written by Dirk Eddelbuettel.

Style SheetVisual Tcl (‘vtcl.ssh’)
Written by Phil Hollenback. All the Vtcl keywords that aren’t in Tcl or TclX.

Style SheetVRML (‘vrml.ssh’)
Written by Nadine Richard. According to Grammar Definition Version 2.0 ISO/IEC CD
147728.

Style Sheetwdiff (‘wdiff.ssh’)
This style is meant to be used onto the output of Franc,ois Pinard’s program wdiff. wdiff
is a utility that underlines the differences of words between to files. Where diff make only
the difference between lines that have changed, wdiff reports words that have changed
inside the lines.
Typical use of this style is:

wdiff old new | a2ps -Ewdiff

wdiff can be found in usual GNU repositories. The prologue diff helps to highlight the
differences (‘a2ps -Ewdiff --prologue=diff’).

Style SheetXS (‘xs.ssh’)
Written by Kestutis Kupciunas. This style covers Perl XS language.

Style SheetYacc (‘yacc.ssh’)
Special tokens, and non terminal declarations are highlighted.

Style SheetZ Shell (‘zsh.ssh’)
Zsh is a UNIX command interpreter (shell) usable as an interactive login shell and as a
shell script command processor. Of the standard shells, zsh most closely resembles ksh
but includes many enhancements. Zsh has comand line editing, builtin spelling correc-
tion, programmable command completion, shell functions (with autoloading), a history
mechanism, and a host of other features.
This style sheet highlights some classical program names and builtins in the second level
of pretty-printing.

8 http://vag.vrml.org/VRML2.0/FINAL/spec/part1/grammar.html

http://vag.vrml.org/VRML2.0/FINAL/spec/part1/grammar.html

Chapter 7: Pretty Printing 55

7.3 Type Setting Style Sheets

This section presents a few style sheets that define page description languages (compared to
most other style sheet meant to pretty print source files).

7.3.1 Symbol

The style sheet Symbol introduces easy to type keywords to obtain the special characters of
the PostScript font Symbol. The keywords are named to provide a LaTEX taste. These keywords
are also the names used when designing a style sheet, hence to get the full list, see Section 7.6.1
[A Bit of Syntax], page 61.

If you want to know the correspondence, it is suggested to print the style sheet file of Symbol:
a2ps -g symbol.ssh

7.3.2 PreScript

PreScript has been designed in conjunction with a2ps. Since bold sequences, special char-
acters etc. were implemented in a2ps, we thought it would be good to allow direct access to
those features: PreScript became an input language for a2ps, where special font treatments
are specified in an ssh syntax (see Section 7.6 [Style Sheets Implementation], page 60).

The main advantages for using PreScript are:
− it is fairly simple,
− a2ps is small and easy to install, hence it is available on every UNIX platform.

It can be a good candidate for generation of PostScript output (syntactic pretty-printers,
generation of various reports etc.).

7.3.2.1 Syntax

Every command name begins with a backslash (‘\’). If the command uses an argument, it is
given between curly braces with no spaces between the command name and the argument.

The main limit on PreScript is that no command can be used inside another command. For
instance the following line will be badly interpreted by a2ps:

\Keyword{Problems using \keyword{recursive \copyright} calls}

The correct way to write this in PreScript is
\Keyword{Problems using} \keyword{recursive} \copyright \Keyword{calls}.

Everything from an unquoted % to the end of line is ignored (comments).

7.3.2.2 PreScript Commands

These commands required arguments.

‘\keyword{text}’
‘\Keyword{text}’

Highlight lightly/strongly the given text. Should be used only for a couple of adja-
cent words.

Chapter 7: Pretty Printing 56

‘\comment{text}’
‘\Comment{text}’

The text is given a special face. The text may be removed if option ‘--strip’ is
used.

‘\label{text}’
‘\Label{text}’

text should be considered as a definition, or an important point in the structure of
the whole text.

‘\string{text}’
Write text with string’s face (e.g., in font Times).

‘\error{text}’
Write text with error’s face (generally a very different face, so that you see imme-
diately).

‘\symbol{text}’
text is written in the PostScript symbol font. This feature is not compatible with
LaTEX. It is recommended, when possible, to use the special keywords denoting
symbols, which are compatible with LaTEX (see Section 7.3.1 [Symbol], page 55).

‘\header{text}’
‘\footer{text}’

Use text as header (footer) for the current page. If several headers or footers are
defined on the same page, the last one is taken into account.

‘\encoding{key}’
Change dynamically the current encoding. After this command, the text is printed
using the encoding corresponding to key.

7.3.2.3 Examples

PreScript and a2ps can be used for one-the-fly formating. For instance, on the ‘passwd’
file:

ypcat passwd |
awk -F: \

’{print "\Keyword{" $5 "} (" $1 ") \rightarrow\keyword{" $7 "}"}’\
| a2ps -Epre -P

7.3.3 PreTEX

The aim of the PreTEX style sheet is to provide something similar to PreScript, but with a
more LaTEX like syntax.

7.3.3.1 Special characters

‘$’ is ignored in PreTEX for compatibility with LaTEX, and ‘%’ introduces a comment. Hence
they are the only symbols which have to be quoted by a ‘\’. The following characters should
also be quoted to produce good LaTEX files, but are accepted by PreScript: ‘_’, ‘&’, ‘#’.

Note that inside a command, like \textbf, the quotation mechanism does not work in
PreScript (\textrm{#$%} writes ‘#$%’) though LaTEX still requires quotation. Hence whenever
special characters or symbols are introduced, they should be at the outer most level.

Chapter 7: Pretty Printing 57

7.3.3.2 PreTEXCommands

These commands required arguments.

‘\section{Title}’
‘\subsection{Title}’
‘\subsubsection{Title}.’

Used to specify the title of a section, subsection or subsubsection.

‘\textbf{text}’
‘\textit{text}’
‘\textbi{text}’
‘\textrm{text}’

write text in bold, italic, bold-italic, Times. Default font is Courier.

‘\textsy{text}’
text is written in the PostScript symbol font. This feature is not compatible with
LaTEX. It is recommended, when possible, to use the special keywords denoting
symbols, which are compatible with LaTEX (See the style sheet Symbol).

‘\header{text}’
‘\footer{text}’

Use text as header (footer) for the current page. If several headers or footers are
defined on the same page, the last one is taken into account.

‘\verb+text+’
Quote text so that no special sequence will be interpreted. In ‘\verb+quoted
string+’ ‘+’ can be any symbol in ‘+’, ‘!’, ‘|’, ‘#’, ‘=’.

‘\begin{document}’
‘\end{document}’
‘\begin{itemize}’
‘\end{itemize}’
‘\begin{enumerate}’
‘\end{enumerate}’
‘\begin{description}’
‘\end{description}’

These commands are legal in LaTEXbut have no sense in PreTEX. Hence there are
simply ignored and not printed (if immediately followed by an end-of-line).

7.3.3.3 Differences with LaTEX

The following symbols, inherited from the style sheet Symbol, are not supported by LaTEX:
‘\Alpha’, ‘\apple’, ‘\Beta’, ‘\carriagereturn’, ‘\Chi’, ‘\Epsilon’, ‘\Eta’, ‘\florin’,

‘\Iota’, ‘\Kappa’, ‘\Mu’, ‘\Nu’, ‘\Omicron’, ‘\omicron’, ‘\radicalex’, ‘\register’, ‘\Rho’,
‘\suchthat’, ‘\Tau’, ‘\therefore’, ‘\trademark’, ‘\varUpsilon’, ‘\Zeta’.

LaTEX is more demanding about special symbols. Most of them must be in so-called math
mode, which means that the command must be inside ‘$’ signs. For instance, though

If \forall x \in E, x \in F then E \subseteq F.

is perfectly legal in PreTEX, it should be written
If $\forall x \in E, x \in F$ then $E \subseteq F$.

for LaTEX. Since in PreTEXevery ‘$’ is discarded (unless quoted by a ‘\’), the second form is
also admitted.

Chapter 7: Pretty Printing 58

7.3.4 TEXScript

TEXScript is a replacement of the old version of PreScript: it combines both the a2ps-like
and the LaTEX-like syntaxes through inheritance of both PreScript and PreTEX.

In addition it provides commands meant to ease processing of file for a2ps by LaTEX.
Everything between ‘%%TeXScript:skip’ and ‘%%TeXScript:piks’ will be ignored in

TEXScript, so that there can be inserted command definitions for LaTEX exclusively.
The commands ‘\textbi’ (for bold-italic) and ‘\textsy’ (for symbol) do not exist in LaTEX.

They should be defined in the preamble:
%%TeXScript:skip
\newcommand{\textbi}[1]{\textbf{\textit{#1}}}
\newcommand{\textsy}[1]{#1}
%%TeXScript:piks

There is no way in TEXScriptto get an automatic numbering. There is no equivalent to
the LaTEX environment enumerate. But every command beginning by \text is doubled by a
command beginning by ‘\magic’. a2ps behaves the same way on both families of commands.
Hence, if one specifies that arguments of those functions should be ignored in the preamble of
the LaTEX document, the numbering is emulated. For instance

\begin{enumerate}
\magicbf{1.}\item First line
\magicbf{2.}\item Second line
\end{enumerate}

will be treated the same way both in TEXScriptand LaTEX.
‘\header’ and ‘\footer’, are not understood by LaTEX.

7.4 Faces

A face is an attribute given to a piece of text, which specifies how it should look like. Since
a2ps is devoted to pretty-printing source files, the faces it uses are related to the syntactic
entities that can be encountered in a file.

The faces a2ps uses are:

‘Plain’ This corresponds to the text body.

‘Keyword’
‘Keyword_strong’

These are related to the keywords that may appear in a text.

‘Comment’
‘Comment_strong’

These are related to comments in the text. Remember that comments should be
considered as non essential ("Aaaeaaarg" says the programmer); indeed, the user
might suppress the comments thanks (?) to the option ‘--strip-level’. Hence,
never use these faces just because you think they look better on, say, strings.

‘Label’
‘Label_strong’

These are used when a point of extreme importance, or a sectioning point, is met.
Typically, functions declarations etc.

‘String’ Used mainly for string and character literals.

Chapter 7: Pretty Printing 59

‘Error’ Used to underline the presence of an error. For instance in Encapsulated PostScript,
some PostScript operators are forbidden: they are underlined as errors.

Actually, there is also the face ‘Symbol’, but this one is particular: it is not legal changing
its font.

7.5 Style Sheets Semantics

a2ps pretty prints a source file thanks to style sheets, one per language. In the following is
described how the style sheets are defined. You may skip this section if you don’t care how a2ps
does this, and if you don’t expect to implement new styles.

7.5.1 Name and key

Every style sheet has both a key, and a name. The name can be clean and beautiful, with
any character you might want. The key is in fact the prefix part of the file name, and is
alpha-numerical, lower case, and less than 8 characters long.

Anywhere a2ps needs to recognize a style sheet by a name, it uses the key (in the
‘sheets.map’ file, with the option ‘-E’, etc.).

As an example, C++ is implemented in a file called ‘cxx.ssh’, in which the name is declared
to be ‘C++’.

The rationale is that not every system accepts any character in the file name (e.g., no ‘+’
in MS-DOS). Moreover, it allows to make symbolic links on the ssh files (e.g., ‘ln -s cxx.ssh
c++.ssh’ let’s you use ‘-E c++’).

7.5.2 Comments

ssh files can include the name of its author, a version number, a documentation note and a
requirement on the version of a2ps. For instance, if a style sheet requires a2ps version 4.9.6,
then a2ps version 4.9.5 will reject it.

7.5.3 Alphabets

a2ps needs to know the beginning and the end of a word, especially keywords. Hence it needs
two alphabets: the first one specifying by which letters an identifier can begin, and the second
one for the rest of the word. If you prefer, a keyword starts with a character belonging to the
first alphabet, and a character not pertaining to the second is a separator.

7.5.4 Case sensitivity

If the style is case insensitive, then matching is case insensitive (keywords, operators and
sequences).

Chapter 7: Pretty Printing 60

7.5.5 P-Rules

A P-rule (Pretty printing rule), or rule for short, is a structure which consists of two items:

lhs
left-hand side

its source string, with which the source file is compared;

rhs
right hand side

a list of faced strings which will replace the text matched in the pretty-printed
output. A faced string is composed of
− a string, or a reference to a part of the source string (see section “Back-reference

Operator” in Regex manual)
− the face to use to print it

Just a short example: ‘(foo, bar, Keyword_strong)’ as a rule means that every input
occurrence of ‘foo’ will be replaced by ‘bar’, written with the Keyword_strong face.

If the destination string is empty, then a2ps will use the source string. This is different from
giving the source string as a destination string if the case is different. An example will make it
fairly clear.

Let foobar be a case insensitive style sheet including the rules ‘(foo, "", Keyword)’ and
‘(bar, bar, Keyword)’. Then, on the input ‘FOO BAR’, a2ps will produce ‘FOO bar’ in Keyword.

a2ps implements two different ways to match a string. The difference comes from that some
keywords are sensitive to the delimiters around them (such as ‘unsigned’ and ‘int’ in C, which
are definitely not the same thing as ‘unsignedint’), and others not (in C, ‘!=’ is "different from"
both in ‘a != b’ and ‘a!=b’).

The first ones are called keywords in a2ps jargon, and the seconds are operators. Operators
are matched anywhere they appear, while keywords need to have separators around them (see
Section 7.5.3 [Alphabets], page 59).

Let us give a more complicated example: that of the Yacc rules. A rule in Yacc is of the
form:

a_rule : part1 part2 ;

Suppose you want to highlight these rules. To recognize them, you will write a regular
expression specifying that:
1. it must start at the beginning of the line,
2. then there is string composed of symbols, which is what you want to highlight,
3. and a colon, which can be preceded by blank characters.

The regexp you want is: ‘/^[a-zA-Z0-9_]*[\t]*:/’. But with the rule
/^[a-zA-Z0-9_]*[\t]*:/, "", Label_strong

the blanks and the colon are highlighted too. Hence you need to specify some parts in the regexp
(see section “Back-reference Operator” in Regex manual), and use a longer list of destination
strings. The correct rule is

(/^([a-zA-Z0-9_]*)([\t]*:)/, \1 Label_strong, \2 Plain)

Since it is a bit painful to read, regexps can be spread upon several lines. It is strongly
suggested to break them by groups, and to document the group:

(/^([a-zA-Z0-9_]*)/ # \1. Name of the rule
/([\t]*:)/ # \2. Trailing space and colon
\1 Label_strong, \2 Plain)

Chapter 7: Pretty Printing 61

7.5.6 Sequences

A sequence is a string between two markers, along with a list of exceptions. A marker is a
fixed string. Typical examples are comments, string (with usually ‘"’ as opening and closing
markers, and ‘\\’ and ‘\"’ as exceptions) etc. Three faces are used: one for the initial marker,
one for the core of the sequence, and a last one for the final maker.

7.5.7 Optional entries

There are two levels of pretty-printing encoded in the style sheets. By default, a2ps uses the
first level, called normal, unless the option ‘-g’ is specified, in which case, heavy highlighting is
invoked, i.e., optional keywords, operators and sequences are considered.

7.6 Style Sheets Implementation

In the previous section (see Section 7.5 [Style sheets semantics], page 58) were explained
the various items needed to understand the machinery involved in pretty printing. Here, their
implementation, i.e., how to write a style sheet file, is explained. The next section (see Section 7.7
[A tutorial on style sheets], page 67), exposes a step by step simple example.

7.6.1 A Bit of Syntax

Here are the lexical rules underlying the style sheet language:
− the separators are white space, form feed, new line, and tab.
− ‘#’ introduces a comment, ended at the end of the line.
− special characters are the separators, plus ‘#’, ‘"’, ‘,’, ‘(’, ‘)’, ‘+’ and ‘/’. Any other character

is a regular character.
− the list of the structuring keywords is

alphabet, alphabets, are, case, documentation, end, exceptions, first,
in, insensitive, is, keywords, operators, optional, second, sensitive,
sequences, style

− the list of the keywords designating faces is
Comment, Comment_strong, Encoding, Error, Index1, Index2, Index3,
Index4, Invisible, Keyword, Keyword_strong, Label, Label_strong, Plain,
String, Symbol, Tag1, Tag2, Tag3, Tag4

− the list of keywords designating special sequences is
C-char, C-string

− the list of keywords representing special characters is
---, \Alpha, \Beta, \Chi, \Delta, \Downarrow, \Epsilon, \Eta, \Gamma,
\Im, \Iota, \Kappa, \Lambda, \Leftarrow, \Leftrightarrow, \Mu, \Nu,
\Omega, \Omicron, \Phi, \Pi, \Psi, \Re, \Rho, \Rightarrow, \Sigma,
\Tau, \Theta, \Uparrow, \Upsilon, \Xi, \Zeta, \aleph, \alpha, \angle,
\approx, \beta, \bullet, \cap, \carriagereturn, \cdot, \chi, \circ,
\clubsuit, \cong, \copyright, \cup, \delta, \diamondsuit, \div,
\downarrow, \emptyset, \epsilon, \equiv, \eta, \exists, \florin,

Chapter 7: Pretty Printing 62

\forall, \gamma, \geq, \heartsuit, \in, \infty, \int, \iota, \kappa,
\lambda, \langle, \lceil, \ldots, \leftarrow, \leftrightarrow, \leq,
\lfloor, \mu, \nabla, \neq, \not, \not\in, \not\subset, \nu, \omega,
\omicron, \oplus, \otimes, \partial, \perp, \phi, \pi, \pm, \prime,
\prod, \propto, \psi, \radicalex, \rangle, \rceil, \register, \rfloor,
\rho, \rightarrow, \sigma, \sim, \spadesuit, \subset, \subseteq,
\suchthat, \sum, \supset, \supseteq, \surd, \tau, \theta, \therefore,
\times, \trademark, \uparrow, \upsilon, \varUpsilon, \varcopyright,
\vardiamondsuit, \varphi, \varpi, \varregister, \varsigma, \vartheta,
\vartrademark, \vee, \wedge, \wp, \xi, \zeta

It is a good idea to print the style sheet ‘symbols.ssh’ to see them:
a2ps symbols.ssh

− a string starts and finishes with ‘"’, and may contain anything. Regular C escaping mecha-
nism is used.

− a regular expression starts and finishes with ‘/’, and may contain anything. Regular C
escaping mechanism is used. Regexps can be split in several parts, a‘ la C strings (i.e.,
‘/part 1/ /part 2/’).

− any sequence of regular characters which is not a keyword, is a string (consider this as a
shortcut, avoiding extraneous ‘"’).

7.6.2 Style Sheet Header

The definition of the name of the style sheet is:
style name is

body of the style sheet
end style

The following constructions are optional:

version To define the version number of the style sheet
version is version-number

written To define the author(s).
written by authors

Giving your email is useful for bug reports about style sheets.
written by "Some Body <Some.Body@some.whe.re>"

requires To specify the version of a2ps it requires. a2ps won’t accept a file which requires a
higher version number than its own.

requires a2ps a2ps-version-number

documentation
To leave extra comments people should read.

documentation is
strings

end documentation

strings may be a list of strings, without comas, in which case new lines are au-
tomatically inserted between each item. See Section 5.1 [Documentation Format],
page 36, for details on the format.
Please, write useful comments, not ‘This style is devoted to C files’, since the
name is here for that, nor ‘Report errors to mail@me.somewhere’, since written
by is there for that.

Chapter 7: Pretty Printing 63

documentation is
"Not all the keywords are used, to avoid too much"
"bolding. Heavy highlighting (code(-g)code), covers"
"the whole language."

end documentation

7.6.3 Syntax of the Words

There are two things a2ps needs to know: what is symbol consistent, and whether the style
is case insensitive.

alphabet To define two different alphabets, use
first alphabet is string
second alphabet is string

If both are identical, you may use the shortcut
alphabets are string

The default alphabets are
first alphabet is

"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ_"
second alphabet is
"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ_\
0123456789"

Note that it is on purpose that no characters interval are used.

case

case insensitive # e.g., C, C++ etc.
case sensitive # e.g., Perl, Sather, Java etc.

The default is case insensitive.

7.6.4 Inheriting from Other Style Sheets

It is possible to extend an existing style. The syntax is:
ancestors are

ancestor 1[, ancestor 2...]
end ancestors

where ancestor1 etc. are style sheet keys.
For semantics, the rules are the following:
− the ancestors are read in order;
− the definition of the current style is read last;
− it is always the last item read which wins (last defined alphabets, case sensitivity, keywords,

operators and sequences).

As an example, both C++ and Objective C style sheets extend the C style sheet:
style "Objective C" is
#[...]
ancestors are

c
end ancestors

Chapter 7: Pretty Printing 64

#[...]
end style

To the biggest surprise of the author, mutually dependent style sheets do work!

7.6.5 Syntax for the P-Rules

See Section 7.5.5 [P-Rules], page 59, for the definition of P-rule.
Because of various short cuts, there are many ways to declare a rule:

rules ::= rule 1 ‘,’ rule 2...
rule ::= ‘(’ lhs rhs ‘)’

| lhs srhs ;
lhs ::= string | regex ;
rhs ::= srhs ‘,’ ...
srhs ::= latex-keyword | expansion face
expansion ::= string | ‘\’num | <nothing>;
face ::= face-keyword | <nothing>;

The rules are the following:
− If the left-hand side (lhs) is a regular expression, then it is compiled with the following

syntax bits:
#define RE_SYNTAX_A2PS \

(/* Allow char classes. */ \
RE_CHAR_CLASSES \

/* Be picky. */ \
| RE_CONTEXT_INVALID_OPS \
/* Allow intervals with ‘{’ and ‘}’, forbid invalid ranges. */\
| RE_INTERVALS | RE_NO_BK_BRACES | RE_NO_EMPTY_RANGES \
/* ‘(’ and ‘)’ are the grouping operators. */ \
| RE_NO_BK_PARENS \
/* ‘|’ is the alternation. */ \
| RE_NO_BK_VBAR)

Basically it means that all of the possible operators are used, and that they are in non-
backslashed form. For instance ‘(’ and ‘)’ stand for the group operator, while ‘\\(’ stands
for the character ‘(’. See section “Regular Expression Syntax” in Regex manual, for a
detailed description of the regular expressions.

− If no expansion is specified, then the matched string is used. For instance ‘(/fo*/, NULL,
Keyword)’ applied on the source ‘fooooo’ produces ‘fooooo’ in Keyword.

− If no face is given, then
− if the context defines the default face, then this face is used;
− if no default face is given, PLAIN is used.

7.6.6 Declaring the keywords and the operators

Basically, keywords and operators are lists of rules. The syntax is:
keywords are

rules
end keywords

or

Chapter 7: Pretty Printing 65

keywords in face-keyword are
rules

end keywords

in which case the default face is set to face-keyword.
As an example:

keywords in Keyword_strong are
/foo*/,
"bar" "BAR" Keyword,
-> \rightarrow

end keywords

is valid.
The syntax for the operators is the same, and both constructs can be qualified with an

optional flag, in which case they are taken into account in the heavy highlighting mode (see
Section 3.1.7 [Pretty Print Options], page 19).

This is an extract of the C style sheet:
optional operators are

-> \rightarrow,
&& \wedge,
|| \vee,
!= \neq,
== \equiv,
We need to protect these, so that <= is not replaced in <<=
<<=,
>>=,
<= \leq,
>= \geq,
! \not

end operators

Note how ‘<<=’ and ‘>>=’ are protected (there are defined to be written as is when met in
the source). This is to prevent the two last characters of ‘<<=’ from being converted into a ‘less
or equal’ sign.

The order in which you define the elements of a category (but the sequences) does not matter.
But since a2ps sorts them at run time, it may save time if the alphabetical C-order is more or
less followed.

You should be aware that when declaring a keyword with a regular expression as lhs, then
a2ps automatically makes this expression matching only if there are no character of the first
alphabet both just before, and just after the string.

In term of implementation, it means that
keywords are

/foo|bar/
end keywords

is exactly the same as
operators are

/\\b(foo|bar)\\b/
end operators

This can cause problems if you use anchors (e.g. $, or ^) in keywords: the matcher will be
broken. In this particular case, define your keywords as operators, taking care of the ‘\\b’ by
yourself.

See section “Match-word-boundary Operator” in Regex manual, for details on ‘\b’.

Chapter 7: Pretty Printing 66

7.6.7 Declaring the sequences

Sequences admit several declarations too:
sequences ::= sequences are

sequence 1 ‘,’ sequence 2...
end sequences

sequence ::= rule in face close opt exceptions opt
| C-string
| C-char
;

close opt ::= rule
| closers are

rules
end closers

| <nothing>
;

exceptions opt ::= exceptions are
rules

end exceptions
| <nothing>
;

The rules are:
− The default face is then in face.
− If no closing rule is given, ‘"\n"’ (i.e., end-of-line) is used.

As a first example, here is the correct definition for a C string:
sequences are
"\"" Plain String "\"" Plain

exceptions are
"\\\\", "\\\""

end exceptions
end sequences

Since a great deal of languages uses this kind of constructs, you may use C-string to mean
exactly this, and C-char for manifest characters defined the C way.

The following example comes from ‘ssh.ssh’, the style sheet for style sheet files, in which
there are two kinds of pseudo-strings: the strings (‘"example"’), and the regular expressions
(‘/example/’). We do not want the content of the pseudo-strings in the face String.

sequences are
The comments
"#" Comment,

The name of the style sheet
"style " Keyword_strong (Label + Index1) " is" Keyword_strong,

Strings are exactly the C-strings, though we don’t want to
have them in the "string" face
"\"" Plain "\""

exceptions are
"\\\\", "\\\""

end exceptions,

Chapter 7: Pretty Printing 67

Regexps
"/" Plain "/"

exceptions are
"\\\\", "\\\/"

end exceptions

end sequences

The order between sequences does matter. For instance in Java, ‘/**’ introduces strong
comments, and ‘/*’ comments. ‘/**’ must be declared before ‘/*’, or it will be hidden.

There are actually some sequences that could have been implemented as operators with a
specific regular expression (that goes up to the closer). Nevertheless be aware of a big difference:
regular expression are applied to a single line of the source file, hence, they cannot match on
several lines. For instance, the C comments,

/*
* a comment
*/

cannot be implemented with operators, though C++ comments can:
//
// a comment
//

7.6.8 Checking a Style Sheet

Once your style sheet is written, you may want to let a2ps perform simple tests on it (e.g.,
checking there are no rules involving upper case characters in a case insensitive style sheet, etc.).
These tests are performed when verbosity includes the style sheets.

you may also want to use the special convention that when a style sheet is required with a
suffix, then a2ps will not look at it in its library path, but precisely from when you are.

Suppose for instance you extended the ‘c.ssh’ style sheet, which is in the current directory,
and is said case insensitive. Run

ubu $ a2ps foo.c -Ec.ssh -P void -v sheets
Long output deleted
Checking coherence of "C" (c.ssh)
a2ps: c.ssh:‘FILE’ uses upper case characters
a2ps: c.ssh:‘NULL’ uses upper case characters
"C" (c.ssh) is corrupted.
---------- End of Finalization of c.ssh

Here, it is clear that C is not case insensitive.

7.7 A Tutorial on Style Sheets

In this section a simple example of style sheet is entirely covered: that of ‘ChangeLog’ files.
‘ChangeLog’ files are some kind of memory of changes done to files, so that various program-

mers can understand what happened to the sources. This helps a lot, for instance, in guessing
what recent changes may have introduced new bugs.

Chapter 7: Pretty Printing 68

7.7.1 Example and syntax

First of all, here is a sample of a ‘ChangeLog’ file, taken from the ‘misc/’ directory of the
original a2ps package:

Sun Apr 27 14:29:22 1997 Akim Demaille <demaille@inf.enst.fr>

* base.ps: Merged in color.ps, since now a lot is
common [added box and underline features].

Fri Apr 25 14:05:20 1997 Akim Demaille <demaille@inf.enst.fr>

* color.ps: Added box and underline routines.

Mon Mar 17 20:39:11 1997 Akim Demaille <demaille@gargantua.enst.fr>

* base.ps: Got rid of CourierBack and reencoded_backspace_font.
Now the C has to handle this by itself.

Sat Mar 1 19:12:22 1997 Akim Demaille <demaille@gargantua.enst.fr>

* *.enc: they build their own dictionaries, to ease multi
lingual documents.

The syntax is really simple: A line specifying the author and the date of the changes, then
a list of changes, all of them starting with an star followed by the name of the files concerned,
then optionally between parentheses the functions affected, and then some comments.

7.7.2 Implementation

Quite naturally the style will be called ChangeLog, hence:
style ChangeLog is
written by "Akim Demaille <demaille@inf.enst.fr>"
version is 1.0
requires a2ps 4.9.5

documentation is
"This is a tutorial style sheet.\n"

end documentation
...

end style

A first interesting and easy entry is that of function names, between ‘(’ and ‘)’:
sequences are

"(" Plain Label ")" Plain
end sequences

A small problem that may occur is that there can be several functions mentioned separated
by commas, that we don’t want to highlight this way. Commas, here, are exceptions. Since
regular expressions are not yet implemented in a2ps, there is a simple but stupid way to avoid
that white spaces are all considered as part of a function name, namely defining two exceptions:
one which captures a single comma, and a second, capturing a comma and its trailing space.

Chapter 7: Pretty Printing 69

For the file names, the problem is a bit more delicate, since they may end with ‘:’, or when
starts the list of functions. Then, we define two sequences, each one with one of the possible
closers, the exceptions being attached to the first one:

sequences are
"* " Plain Label_strong ":" Plain

exceptions are
", " Plain, "," Plain

end exceptions,
"* " Plain Label_strong " " Plain

end sequences

Finally, let us say that some words have a higher importance in the core of text: those about
removing or adding something.

keywords in Keyword_strong are
add, added, remove, removed

end keywords

Since they may appear in lower or upper, of mixed case, the style will be defined as case
insensitive.

Finally, we end up with this style sheet file, in which an optional highlighting of the mail
address of the author is done. Saving the file is last step. But do not forget that a style sheet
has both a name as nice as you may want (such as ‘Common Lisp’), and a key on which there
are strict rules: the prefix must be alpha-numerical, lower case, with no more than 8 characters.
Let’s chose ‘chlog.ssh’.

This is a tutorial on a2ps’ style sheets
style ChangeLog is
written by "Akim Demaille <demaille@inf.enst.fr>"
version is 1.0
requires a2ps 4.9.5

documentation is
"Second level of high lighting covers emails."

end documentation

sequences are
"(" Plain Label ")" Plain

exceptions are
", " Plain, "," Plain

end exceptions,
"* " Plain Label_strong ":" Plain

exceptions are
", " Plain, "," Plain

end exceptions,
"* " Plain Label_strong " " Plain

end sequences

keywords in Keyword_strong are
add, added, remove, removed

end keywords

optional sequences are
< Plain Keyword > Plain

end sequences

Chapter 7: Pretty Printing 70

end style

As a last step, you may which to let a2ps check your style sheet, both its syntax, and common
errors:

ubu $ a2ps -vsheet -E/tmp/chlog.ssh ChangeLog -P void
Long output deleted
Checking coherence of "ChangeLog" (/tmp/chlog.ssh)
"ChangeLog" (/tmp/chlog.ssh) is sane.
---------- End of Finalization of /tmp/chlog.ssh

It’s all set, your style sheet is ready!

7.7.3 The Entry in ‘sheets.map’

The last touch is to include the pattern rules about ‘ChangeLog’ files (which could appear as
‘ChangeLog.old’ etc.) in ‘sheets.map’:

ChangeLog files
chlog: /ChangeLog*/

This won’t work... Well, not always. Not for instance if you print ‘misc/ChangeLog’. This
is not a bug, but truly a feature, since sometimes one gets more information about the type of
a file from its path, than from the file name.

Here, to match the preceding path that may appear, just use ‘*’:
ChangeLog files
chlog: /*ChangeLog*/

If you want to be more specific (‘FooChangeLog’ should not match), use:
ChangeLog files
chlog: /ChangeLog*/ /*\/ChangeLog*/

7.7.4 More Sophisticated Rules

The example we have presented until now uses only basic features, and does not take ad-
vantage of the regexp. In this section we should how to write more evolved pretty printing
rules.

The target will be the lines like:
Sun Apr 27 14:29:22 1997 Akim Demaille <demaille@inf.enst.fr>

Fri Apr 25 14:05:20 1997 Akim Demaille <demaille@inf.enst.fr>

There are three fields: the date, the name, the mail. These lines all start at the begin-
ning of line. The last field is the easier to recognize: is starts with a ‘<’, and finishes with a
‘>’. Its rule is then ‘/<[^>]+>/’. It is now easier to specify the second: it is composed only
of words, at least one, separated by blanks, and is followed by the mail: ‘/[[:alpha:]]+([
\t]+[[:alpha:]]+)*/’. To concatenate the two, we introduce optional blanks, and we put
each one into a pair of ‘(’-‘)’ to make each one a recognizable part:

([[:alpha:]]+([\t]+[[:alpha:]]+)*)
(.+)
(<[^>]+>)

Now the first part is rather easy: it starts at the beginning of the line, finishes with a digit.
Once again, it is separated from the following field by blanks. Split by groups (see section
“Grouping Operators” in Regex manual), we have:

Chapter 7: Pretty Printing 71

^
([^\t].*[0-9])
([\t]+)
([[:alpha:]]+([\t]+[[:alpha:]]+)*)
(.+)
(<[^>]+>)

Now the destination is composed of back references to those groups, together with a face:
We want to highlight the date and the maintainer name
optional operators are

(/^([^\t].*[0-9])/ # \1. The date
/([\t]+)/ # \2. Spaces
/([[:alpha:]]+([\t]+[[:alpha:]]+)*)/ # \3. Name
/(.+)/ # \5. space and <
/(<[^>]+)>/ # \6. email
\1 Keyword, \2 Plain, \3 Keyword_strong,
\5 Plain, \6 Keyword, > Plain)

end operators

Notice the way regexps are split, to ease reading.

7.7.5 Guide Line for Distributed Style Sheets

This section is meant for people who wish to contribute style sheets. There is a couple of
additional constraints, explained here.

The Copyright
Please, do put a copyright in your file, the same as all other distributed files have: it
should include your name, but also the three paragraphs stating the sheet is covered
by the GPL. I won’t distribute files without these paragraphs.

The Version
Do put a version number, so that people can track evolutions.

The Requirements
Make sure to include a requirement on the needed version of a2ps. If you don’t
know what to put, just put the version of the a2ps you run.

The Documentation
The documentation string is mandatory. Unless the language your style sheet covers
is widely known, please document a bit what the style sheet is meant for. If there
were choices you made, if there are special behaviors, document them.

The ‘sheets.map’ Entries
Put in a comment on the ‘sheets.map’ lines that correspond to your style sheet.

A Test File
It is better to give a test file, as small as possible, that contains the most specific
and/or most difficult contructs that your style sheet supports. I need to be able to
distribute this file, therefore, do not put anything that is copyrighted.

Finally, make sure your style sheet behaves well! (see Section 7.6.8 [Checking a Style Sheet],
page 66)

Chapter 8: PostScript 72

8 PostScript

This chapter is devoted to the information which is only relevant to PostScript.

8.1 Foreword: Good and Bad PostScript

To read this section, the reader must understand what DSC are (see Appendix A [Glossary],
page 89).

Why are there good PostScript files, easy to post-process, and bad files that none of
my tools seem to understand? They print fine though!

Once you understood that PostScript is not a page description format (like PDF is), you’ll
have understood most of the problem. Let’s imagine for a second that you are a word processor.

The user asks you to print his/her 100 page document in PostScript. Up to page 50, there
are few different fonts used. Then, on pages 51 to 80, there are now many different heavy fonts.

When/where will you download the fonts?
The most typical choice, sometimes called Optimize for Speed, is, once you arrived to page

51, to download those fonts once for the rest of the document. The global processing chain will
have worked quite quickly: little effort from the software, same from the printer; better yet: you
can start sending the file to the printer even before it is finished! The problem is that this is
not DSC conformant, and it is easy to understand why: if somebody wants to print only the
page 60, then s/he will lack the three fonts which were defined in page 51... This document is
not page independent.

Another choice is to download the three fonts in each page ranging from 51 to 80, that is
the PostScript file contains 30 times the definition of each font. It is easy for the application to
do that, but the file is getting real big, and the printer will have to interpret 30 times the same
definitions of fonts. But it is DSC conformant! And you can still send the file while you make
it.

Now you understand why
Non DSC conformant files are not necessarily badly designed files from broken
applications.

They are files meant to be sent directly to the printer (they are still perfect PostScript files
after all!), they are not meant to be post-processed. And the example clearly shows why they
are right.

There is a third possibility, sometimes called Optimize for Portability : downloading the three
fonts in the prologue of the document, i.e., the section before the first page where are given all
the common definitions of the whole file. This is a bit more complicated to implement (the
prologue, which is issued first though, grows at the same time as you process the file), and
cannot be sent concurrently with the processing (you have to process the whole file to design the
prologue). This file is small (the fonts are downloaded once only), and DSC conformant. Well,
there are problems, of course... You need to wait before sending the output, it can be costly
for the computer (which cannot transfer as it produces), and for the printer (you’ve burnt quite
a lot of RAM right since the beginning just to hold fonts that won’t be used before page 51...
This can be a real problem for small printers).

This is what a2ps does.
If should be clear that documents optimized for speed should never escape the way between

the computer and the printer: no post-processing is possible.

Chapter 8: PostScript 73

What you should remember is that some applications offer the possibility to tune the
PostScript output, and they can be praised for that. Unfortunately, when these very same appli-
cations don’t automatically switch to “Optimize for Portability” when you save the PostScript
file, and they can be criticized for that.

So please, think of the people after you: if you create a PostScript file meant to be exchanged,
read, printed, etc; by other people: give sane DSC conformant, optimized for portability files.

8.2 Page Device Options

Page device is a PostScript level 2 feature that offers an uniform interface to control the
printer’s output device. a2ps protects all page device options inside an if block so they have no
effect in level 1 interpreters. Although all level 2 interpreters support page device, they do not
have to support all page device options. For example some printers can print in duplex mode
and some can not. Refer to the documentation of your printer for supported options.

Here are some usable page device options which can be selected with the ‘-S’ option
(‘--setpagedevice’). For a complete listing, see PostScript Language Reference Manual (sec-
tion 4.11 Device Setup in the second edition, or section 6, Device Control in the third edition).

Collate boolean
how output is organized when printing multiple copies

Duplex boolean
duplex (two side) printing

ManualFeed boolean
manual feed paper tray

OutputFaceUp boolean
print output ‘face up’ or ‘face down’

Tumble boolean
how opposite sides are positioned in duplex printing

8.3 Statusdict Options

The statusdict is a special storage entity in PostScript (called a dictionary), in which some
variables and operators determine the behavior of the printer. This is an historic horror that
existed before page device definitions were defined. They are even more printer dependent,
and are provided only for the people who don’t have a level printer. In any case, refer to the
documentation of your printer for supported options.

Here are some statusdict definitions in which you might be interested:

manualfeed boolean
Variable which determine that the manual fed paper tray will be used. Use is
‘--statusdict=manualfeed::true’.

setmanualfeed boolean
Idem as the previous point, but use is ‘--statusdict=setmanualfeed:true’.

setduplexmode boolean
If boolean, then print Duplex. Use if ‘--statusdict=setduplexmode:true’.

Chapter 8: PostScript 74

8.4 Colors in PostScript

Nevertheless, here are some tips on how to design your PostScript styles. It is strongly
recommended to use ‘gray.pro’ or ‘color.pro’ as a template.

There are two PostScript instructions you might want to use in your new PostScript prologue:

setgray this instruction must be preceded by a number between 0 (black) and 1 (white). It
defines the gray level used.

setrgbcolor
this instruction must be preceded by three numbers between 0 (0 %) and 1 (100%).
Those three numbers are related to red, green and blue proportions used to designate
a color.

a2ps uses two higher level procedures, BG and FG, but both use an argument as in
setrgbcolor. So if you wanted a gray shade, just give three times the same ratio.

8.5 a2ps PostScript Files

a2ps uses several types of PostScript files. Some are standards, such as font files, and others
are meant for a2ps only.

All a2ps files have two parts, one being the comments, and the other being the content,
separated by the following line:

% code follows this line

8.6 Designing PostScript Prologues

It is pretty known that satisfying the various human tastes is an NEXPTIME-hard problem,
so a2ps offers ways to customize its output through the prologue files. But since the authors
feel a little small against NEXPTIME, they agreed on the fact that you are the one who will
design the look you like.

Hence in this section, you will find what you need to know to be able to customize a2ps
output.

Basically, a2ps uses faces which are associated to their "meaning" in the text. a2ps let’s you
change the way the faces look.

8.6.1 Definition of the faces

There are three things that define a face:

Its font You should never call the font by yourself, because sometimes a2ps may decide that
another font would be better. This is what happens for instance if a font does not
support the encoding you use.
Hence, never set the font by yourself, but ask a2ps to do it. This is done through
a line:

%Face: face real-font-name size

This line tells a2ps that the font of face is real-font-name. It will replace this line
by the correct PostScript line to call the needed font, and will do everything needed
to set up the font.

Chapter 8: PostScript 75

The size of the text body is bfs.

Its background color
There are two cases:
1. You want a background color, then give the RGB (see Section 8.4 [Colors in

PostScript], page 73) ratio and true to BG:
0.8 0.8 0 true BG

2. You don’t want a background color, then call BG with false:
false BG

Its foreground color
As BG, call FG with an RGB ratio:

0 0.5 0 FG

Its underlining
UL requires a boolean argument, depending whether you want or not the current
face to be underlined.

true UL

Its boxing Requiring a boolean, BX let’s a face have a box drawn around.

8.6.2 Prologue File Format

Prologue files for a2ps must have ‘pro’ as suffix. Documentation (reported with
‘--list-prologues’) can be included in the comment part:

Documentation
This prologue is the same as the prologue code(pb)code, but using
the bold version of the fonts.
EndDocumentation
% code follows this line

See Section 5.1 [Documentation Format], page 36, for more on the format.

8.6.3 A step by step example

We strongly suggest our readers not to start from scratch, but to copy one of the available
styles (see the result of ‘a2ps --list=prologues’), to drop it in one of a2ps directories (say
‘$HOME/.a2ps’, and to patch it until you like it.

Here, we will start from ‘color.pro’, trying to give it a funky look.
Say you want the keywords to be in Helvetica, drawn in a flashy pink on a light green. And

strong keywords, in Times Bold Italic in brown on a soft Hawaiian sea green (you are definitely
a fine art amateur).

Then you need to look for ‘k’ and ‘K’:
/k {

false BG
0 0 0.9 FG

%Face: Keyword Courier bfs
Show

} bind def

/K {

Chapter 8: PostScript 76

false BG
0 0 0.8 FG

%Face: Keyword_strong Courier-Bold bfs
Show

} bind def

and turn it into:
/k {

0.2 1 0.2 true BG
1 0.2 1 FG

%Face: Keyword Helvetica bfs
Show

} bind def

/K {
0.4 0.2 0 true BG
0.5 1 1 FG

%Face: Keyword_strong Times-BoldItalic bfs
Show

} bind def

Waouh! It looks great!
A bit trickier: let change the way the line numbers are printed.
First, let’s look for the font definition:

%%BeginSetup
% The font for line numbering
/f# /Helvetica findfont bfs .6 mul scalefont def
%%EndSetup

Let it be in Times, twice bigger than the body font.
%%BeginSetup
% The font for line numbering
/f# /Times-Roman findfont bfs 2 mul scalefont def
%%EndSetup

How about its foreground color?
% Function print line number (<string> # -)
/# {

gsave
sx cw mul 2 div neg 0 rmoveto
f# setfont
0.8 0.1 0.1 FG
c-show

grestore
} bind def

Let it be blue. Now you know the process: just put ‘0 0 1’ as FG arguments.

Chapter 9: Contributions 77

9 Contributions

This chapter documents the various shell scripts or other tools that are distributed with the
a2ps package, but are not a2ps itself. The reader should also look at the documentation of
Ogonkify (see section “Overview” in Ogonkify manual), written by Juliusz Chroboczek.

9.1 card

Many users of a2ps have asked for a reference card, presenting a summary of the options. In
fact, something closely related to the output of ‘a2ps --help’.

The first version of this reference card was a PreScript file (see Section 7.3.2 [PreScript],
page 55) to be printed by a2ps. Very soon a much better scheme was found: using a style sheet
to pretty print directly the output of ‘a2ps --help’! A first advantage is then that the reference
cards can be printed in the tongue you choose.

A second was that this treatment could be applied to any application supporting a ‘--help’-
like option.

9.1.1 Invoking card

card [options] applications [-- a2ps-options]

card is a shell script which tries to guess how to get your applications’ help message (typically
by the options ‘--help’ or ‘-h’), and pretty prints it thanks to a2ps (or the content of the
environment variable ‘A2PS’ if it is set). a2ps-options are passed to a2ps.

Supported options are:

Option-h
Option--help

print a short help message and exit successfully.

Option-V
Option--version

report the version and exit successfully.

Option-q
Option--quiet
Option--silent

Run silently.

Option-D
Option--debug

enter in debug mode.

Option-l language
Option--language=language

specify the language in which the reference card should be printed. language should be
the symbol used by LC_ALL etc. (such as ‘fr’, ‘it’ etc.).
If the applications don’t support internationalization, English will be used.

Chapter 9: Contributions 78

Option--command=command
Don’t try to guess the applications’ way to report their help message, but rather use the
call command. A typical example is

card --command="cc -flags"

It is possible to give options to a2ps (see Section 3.1 [Options], page 10) by specifying them
after ‘--’. For instance

card gmake gtar --command="cc -flags" -- -Pdisplay

builds the reference card of GNU make, GNU tar (automatic detection of ‘--help’ support), and
cc thanks to ‘-flags’.

9.1.2 Caution when Using card

Remember that card runs the programs you give it, and the commands you supplied. Hence
if there is a silly programs that has a weird behavior given the option ‘-h’ etc., beware of the
result.

It is even clearer using ‘--command’: avoid running ‘card --command="rm -rf *"’, because
the result will be exactly what you think it will be!

9.2 fixps

The shell script fixps tries its best to fix common problems in PostScript files that may
prevent post processing. It makes heavy use of the psutils. It is a good idea to use fixps in
the PostScript delegations.

It first tries to make simple fixes, but some really broken files may require a much deeper
treatment. If fixps feels the need for such a major surgery act, it may give up local changes
and ask Ghostscript for a global rewriting.

9.2.1 Invoking fixps

fixps [options] [file]

sanitize the PostScript file (or of the standard input if no file is given, or if file is ‘-’).
Supported options are:

Option-h
Option--help

Print a short help message and a list of the fixes that are performed. Exit successfully.

Option-V
Option--version

report the version and exit successfully.

Option-D
Option--debug

enter in debug mode.

Chapter 9: Contributions 79

Option-q
Option--quiet
Option--silent

Run silently.

Option-o file
Option--output=file

specify the file in which is saved the output.

Option-n
Option--no-fix

Don’t actually fix the file but still honor all of the other options. In particular, ‘fixps
-qn file’ is equivalent to ‘cat file’.

Option-c
Option--check
Option--dry-run

Don’t actually fix the file: just report the diagnostics. Contrary to the option ‘fixps -qc’
does absolutely nothing (while it does take some time to do it nicely).

Option-f
Option--force

Ask ghoscript for a full rewrite of the file. The output file is really sane, but can be
much longer than the original. For this reason and others, it is not always a good idea to
make a full rewrite. This option should be used only for files that give major problems.

9.3 fixnt

fixnt (see its1 home page) is maintained by Holger Bauer (bauer@itsm.uni-stuttgart.de)
and Michael Rath (rath@itsm.uni-stuttgart.de). It is meant to fix the problems of the
PostScript files generated by the Microsoft PostScript driver under Windows NT (3.5 and 4.0).

fixps is aware of the cases where fixnt should be used, hence you should not worry of when
to use fixnt.

9.3.1 Invoking fixnt

fixnt < ‘file.ps’

sanitize the PostScript file file.ps and produce the result on the standard output.

9.4 pdiff

The shell script pdiff aims to pretty print diffs between files. It basically uses GNU diff
(see section “Overview” in Comparing and Merging Files) or GNU wdiff (see section “The word
difference finder” in GNU wdiff) to extract the diff, then calls a2ps with the correct settings to
get a nice, printed contextual diff.

1 http://www.itsm.uni-stuttgart.de/~bauer/fixnt.html

http://www.itsm.uni-stuttgart.de/~bauer/fixnt.html

Chapter 9: Contributions 80

9.4.1 Invoking pdiff

pdiff [options] file-1 file-2 [-- a2ps-options]

make a pretty comparison between file-1 and file-2. a2ps-options are passed to a2ps.

Supported options are:

Option-h
Option--help

print a short help message and exit successfully.

Option-V
Option--version

report the version and exit successfully.

Option-q
Option--quiet
Option--silent

Run silently.

Option-D
Option--debug

enter in debug mode.

Option-w
Option--words

Look for words differences (default). White space differences are not considered.

Option-l
Option--lines

Look for lines differences.

It is possible to give options to a2ps (see Section 3.1 [Options], page 10) by specifying them
after ‘--’. For instance

pdiff COPYING COPYING.LIB -- -1 -P display

Compares the files ‘COPYING’ and ‘COPYING.LIB’, and prints it on the printer display (usually
Ghostview or gv).

9.5 psmandup

I personally hate to print documents of hundreds of pages on a single sided printer. Too bad,
here there are no Duplex printers. The idea is then simply first to print the odd pages, then
the even in reversed order. To make sure one flips the page in the meanwhile, the second half
should be printed from the manual feed tray.

Make a shell script that automates this, and you get psmandup.

Chapter 9: Contributions 81

9.5.1 Invoking psmandup

psmandup [options] [file]

produce a manual duplex version of the PostScript file (or of the standard input if no file is
given, or if file is ‘-’). Once the first half is printed, put the sheet stack in the manual feed tray
for the second half2.

Be aware that there is a time out for manually fed jobs, usually short, hence do not miss
the moment when the printer asks for the stack. If ever you missed that moment, see option
‘--back’ to recover the second half.

Supported options are:

Option-h
Option--help

print a short help message and exit successfully.

Option-V
Option--version

report the version and exit successfully.

Option-q
Option--quiet
Option--silent

Run silently.

Option-D
Option--debug

enter in debug mode.

Option-o file
Option--output=file

specify the file in which is saved the output.

Option-n
Option--no-fix

psmandup will fail on ill designed PostScript (well, actually the psutils will). To avoid this,
by default the PostScript file is sanitized by fixps.
When given this option, don’t run fixps. This is meant to be used when fixps has
already been used higher in the processing chain.

Option-f
Option--front

Output only the front pages, with no special PostScript feature request.

Option-b
Option--back

Output only the back pages, with a manual feed request.
This option is especially useful when the manual feed time out expired before you could
insert back the stack in the manual feed tray.

2 Many people seem to ignore that you can insert several sheets in the manual feed tray. Try
at least once, it will save you from hours spent feeding page per page by hand!

Chapter 9: Contributions 82

psmandup assumes the printer is Level 2, and supports manual feeding. The file should be
reasonably sane, otherwise psmandup fails miserably.

Typical use is
psmandup file.ps | lp

or can be put into a2ps’ printer commands (see Section 4.5 [Your Printers], page 29).

9.6 psset

The shell script psset inserts calls to setpagedevice in a PostScript file. This is useful for
instance to add Tumble or Manual feed request. Actually, psmandup uses psset.

You should know nevertheless that a2ps is able to make the calls to setpagedevice by itself,
i.e., you can run ‘a2ps -SManualFeed foo’ to print ‘foo’ onto the manually fed tray, or run ‘a2ps
-s2 foo’ to print Duplex. There are no need of psset from a2ps.

9.6.1 Invoking psset

psset [options] [file]

produce a version of the PostScript file (or of the standard input if no file is given, or if file is ‘-’)
that makes protected calls to the PostScript operator setpagedevice. Typical use is making
file print duplex, or on the manual tray etc.

The call is protected so that the resulting file is safe, i.e., will still be portable, even with
requests such as ‘-Sfoo:bar’.

It is safe to run psset with no feature requests. Depending upon the option ‘--no-fix’, it
is either equivalent to doing nothing, or to running fixps (see Section 9.2 [fixps], page 78).

Supported options are:

Option-h
Option--help

Print a short help message and exit successfully.

Option-V
Option--version

report the version and exit successfully.

Option-D
Option--debug

enter in debug mode.

Option-q
Option--quiet
Option--silent

Run silently.

Option-o file
Option--output=file

specify the file in which is saved the output.

Chapter 9: Contributions 83

Option-n
Option--no-fix

psset will fail on ill designed PostScript. Actually it is the psutils that fail. To avoid this,
by default the PostScript file is sanitized by fixps.
When given this option, don’t run fixps. This is meant to be used when fixps has
already been used higher in the processing chain.

Option-S key :value
Option--setpagedevice=key:value

Insert a setpagedevice call setting key to value. Multiple values accumulate. Lists of
requests separated with ‘;’ are valid (e.g., ‘-SDuplex:true;Tumble:false’).

Option-a page
Option--at=page

Specify the page where the setpagedevice call should be done. The page 0, which is the
default, corresponds to the ‘Setup’ section of the document. More precisely, the insertion
is performed at the end of the ‘Setup’ section, so that if there are multiple calls to psset
on the same document (which is of course, a bad idea), the last call is winning.
In a typical use you should not change the page.

Option-m
Option--manualfeed

Alias for ‘-SManualFeed:true’, i.e., the request to print using the manual feed tray.

Option-s
Option--simplex

Alias for ‘-SDuplex:false’, i.e., force simplex printing.

Option-d
Option--duplex

Alias for ‘-SDuplex:true;Tumble:false’, i.e., the request to print in duplex mode, bind-
ing along the long edge of the paper.

Option-t
Option--tumble

Alias for ‘-SDuplex:true;Tumble:true’, i.e., duplex printing such that binding should
happen on the short edge of the medium.

Chapter 10: Frequently asked questions 84

10 Frequently asked questions

Please, before sending us mail, make sure the problem you have is not known, and explained.
Moreover, avoid using the mailing list for asking question about the options, etc. It has been
built for announces and suggestions, not to contact the authors.

10.1 Why Does...?

Error related questions.

10.1.1 Why Does it Print Nothing?

a2ps works OK, but the printer prints nothing.

There are two ways that printing can fail: silently, or with a diagnostic.

First, check that the printer received what you sent. a2ps may correctly do its job, but have
the printer queue fail to deliver the job. In case of doubt, please check that the printer’s leds
blink (or whatever is its way to show that something is being processed).

If the printer does receive the job, but prints nothing at all, check that you did not give
exotic options to an old printer (typically, avoid printing on two sides on a printer that does
not support it). Avoid using ‘-S’, ‘--setpagedevice’ (see Section 8.2 [Page Device Options],
page 73) and ‘--statusdict’ (see Section 8.3 [Statusdict Options], page 73).

If the trouble persists, please try again but with the option ‘--debug’ (a PostScript error
handler is downloaded), and then send us:

1. the input file that gives problems
2. the output file created by a2ps with the option ‘--debug’

3. the error message that was printed.

10.1.2 Why Does it Print in Simplex?

Though I ask a2ps to print Duplex via ‘--sides’, the job is printed Simplex.

If your printer is too old, then a2ps will not be able to send it the code it needs when ‘-s2’
is specified. This is because your printer uses an old and not standardized interface for special
features.

So you need to

1. specify that you want Duplex mode: ‘-s2’,
2. remove by hand the standardized call to the Duplex feature: ‘-SDuplex’,
3. add the non standard call to Duplex. Try ‘--statusdict=setduplexmode:true’.

Since this is painful to hit, a User Option (see Section 4.6 [Your Shortcuts], page 30) should
help.

Chapter 10: Frequently asked questions 85

10.1.3 Why Does it Print in Duplex?

Though I ask a2ps to print Simplex via ‘--sides’, the job is printed Duplex.
Actually when you require Simplex, a2ps issues nothing, for portability reasons. Hence, if

your printer is defaulted to Duplex, the job will be Duplexed. So you have to force a2ps to
issue the Simplex request with ‘-SDuplex:false’. The user options ‘-=s1’ and ‘-=simplex’
have names easier to remember.

In the next version of a2ps this kind of portability problems will be fixed in a user friendly
way.

10.1.4 Why Does it Not Fit on the Paper?

When I print text files with a2ps, it prints beyond the frame of the paper.
You are most probably printing with a bad medium, for instance using A4 paper within a2ps,

while your printer uses Letter paper. Some jet printers have a small printable area, and a2ps
may not expect it. In both case, read Section 3.1.3 [Sheet Options], page 13, option ‘--medium’
for more.

10.1.5 Why Does it Print Junk?

What I get on the printer is long and incomprehensible. It does not seem to corre-
spond to what I wanted to print.

You are probably printing a PostScript file or equivalent. Try to print with ‘-Z’: a2ps
will try to do his best to find what is the program that can help you (see Section 4.10 [Your
Delegations], page 32). In case of doubt, don’t hesitate to save into a file, and check the content
with Ghostview, or equivalent:� �

$ a2ps my_weird_file -Z -o mwf.ps
$ gv mwf.ps
 	

If your a2ps is correctly installed, you can use the ‘display’ fake-printer:� �
$ a2ps my_weird_file -Z -P display
 	

If it is incorrect, ask for help around you.

10.1.6 Why Does it Say my File is Binary?

a2ps complains that my file is binary though it is not.
There are several reasons that can cause a2ps to consider a file is binary:
− there are many non printable characters in the file. Then you need to use the option

‘--print-anyway’.
− the file is sane, composed of printable characters. Then it is very likely that file(1) said

the type of the file is ‘data’, in which case a2ps prefers not to print the file. Then you can
either:

Chapter 10: Frequently asked questions 86

− specify the type of the file, for instance ‘-Eplain’;
− specify to print in any case, ‘--print-anyway’;
− remove the annoying rule from the system’s ‘sheets.map’:

binary: <data*>

− insert in your own ‘~/.a2ps/sheets.map’ a rule that overrides that of the system’s
‘sheets.map’:

Load the system’s sheets.map
include(/usr/local/share/a2ps/sheets/sheets.map)

Override the rule for files with type ‘data’ according to file(1)
plain: <data*>

But this is not very good, since then this rule is always the first tested, which means
that any file with type ‘data’ according to file(1) will be printed in ‘plain’ style,
even if the file is called ‘foo.c’.

− if your files can be recognized, insert a new rule in a ‘sheets.map’, such as
file(1) says it’s data, but it’s pure text
plain: /*.txx/

10.1.7 Why Does it Refuse to Change the Font Size

a2ps does not seem to honor --font-size (or ‘--lines-per-page’, or ‘--chars-per-line’).
This is probably because you used ‘-1’..‘-9’ after the ‘--font-size’. This is wrong, because

the options ‘-1’..‘-9’ set the font size (so that there are 80 characters per lines), and many other
things (See Section 3.1.4 [Page Options], page 15, option ‘--font-size’).

Hence ‘a2ps --font-size=12km -4’ is exactly the same thing as ‘a2ps -4’, but is different
from ‘a2ps -4 --font-size=12km’. Note that the ‘pure’ options (no side-effects) to specify the
number of virtual pages are ‘--columns’ and ‘--rows’.

10.2 How Can I ...?

A mini how-to on a2ps.

10.2.1 How Can I Leave Room for Binding?

The option ‘--margin[=size]’ is meant for this. See Section 3.1.3 [Sheet Options], page 13.

10.2.2 How Can I Print stdin?

a2ps prints the standard input if you give no file name, or if you gave ‘-’ as file name.
Automatic style selection is of course much weaker: without the file name, a2ps can only get
file(1)’s opinion (see Section 5.4 [Style Sheet Files], page 39). In general it means most
delegations are safe, but there will probably be no pretty-printing.

‘You’ can supply a name to the standard input (‘--stdin=name’) with which it could guess
the language.

Chapter 10: Frequently asked questions 87

10.2.3 How Can I Change the Fonts?

See Section 8.6 [Designing PostScript Prologues], page 74, for details. Make sure that all the
information a2ps needs is available (see Section 5.3 [Font Files], page 38).

10.2.4 How Can I Simulate the Old Option ‘-b’?

By the past, a2ps had an option ‘-b’ with which the fonts were bold. Since now the fonts
are defined by prologues (see Section 8.6 [Designing PostScript Prologues], page 74) this option
no longer makes sense. A replacement prologue is provided: ‘bold’. To use it, give the option
‘--prologue=bold’.

10.2.5 How Can I Pass Options to ‘lpr’

How can I tell a2ps to ask lpr no to print the banner?
How can I pass specific options to lp?

If your ‘Printer:’ fields in the configuration files were properly filled (see Section 4.5 [Your
Printers], page 29), you can use the variable ‘lp.options’ to pass options to lpr (or lp, de-
pending on your environment):

a2ps -Dlp.options="-h -s" -P printer

You can also define ‘lp.options’ once for all, See Section 4.9.1 [Defining Variables], page 31.
Finally, you can use ‘Printer:’ several times to reach a printer with different lpr options.

10.2.6 How Can I Print on Non PostScript Printers?

I use a2ps at work and wish to use it at home, but my printer is not PostScript.
How can I do?

Ghostscript might be the tool you need (see Appendix A [Glossary], page 89). It support
conversion to many different non PostScript printers.

Here are some tips on how to use a non PostScript printer. If somebody feels like writing a
more precise documentation, she really is welcome.

Please refer to the Ghostscript documentation for a precise description of the tuning you
need.

Basically, the first step you need is to achieve to call Ghostscript in a pipe chain. In other
words, try to find out the right arguments Ghostscript needs in order to print with a command
like this:

$ cat file.ps | gs more arguments

In general it is the same command as for calling Ghostscript with a filename, except that
the file name to use is ‘-’:

$ cat file.ps \
| gs -q -dNOPAUSE -sDEVICE=deskjet -sOutputFile=- - -c quit\
| lp -dprinter-name

Once it works, it is then easy to settle the right Printer: line in your configuration file (see
Section 4.5 [Your Printers], page 29). For instance:

Chapter 10: Frequently asked questions 88

Printer: djet \
| gs -q -dNOPAUSE -sDEVICE=deskjet -sOutputFile=- - -c quit\
| lp -d djet

Christian Mondrup (scancm@biobase.dk) uses a2ps under Windows with a non PostScript
printer. He uses:

DefaultPrinter: | //c/gstools/gs5.10/Gswin32c.exe \
-Ic:\gstools\gs5.10;c:\gstools\gs5.10\fonts \
-sDEVICE=ljet4 -sPAPERSIZE=a4 -dNOPAUSE -r300 -dSAFER \
-sOutputFile="\\spool\HP LaserJet 5L (PCL)" \
-q - -c quit

10.2.7 How Can I Print Man Pages with Underlines

By the past, when I printed a man page with a2ps, it used underlines, but now it
uses italics. I want underlines back!

Use ‘a2ps --pro=ul’.

10.3 Please tell me...

Wondering something?

10.3.1 Is a2ps Y2K compliant?

The famous Y2K1 problem...
Yes, a2ps is Y2K compliant... provided that you have either a version more recent than

4.10.3. The expansions of the following escapes were broken (giving ‘100’ instead of ‘00’): ‘%D’,
‘%W’, ‘$D’, ‘$W’.

Nevertheless, please note that if you required a two digit year, expect to have ‘Jan 1st, 00’
someday. You are responsible of the format you want for the date: See Section 3.2 [Escapes],
page 22.

10.3.2 Why Have the Options Changed?

The options of this a2ps are not the same as in the previous versions.
True. But the old scheme (up to version 4.6.1) prevented us from offering more options. We

had to drop it, and to fully redesign the options handling.
Since that profound change, we try to change as little as possible between versions. Nev-

ertheless, as the time passes, we discover that some never used options should be renamed, or
used for something else. In these cases, compatibility code is left for a long time.

Anywhere you put options but the command line (e.g., in a2ps configuration files or in shell
scripts), avoid using short options, since short options are much more likely to be changed (there
are not so many, so it is a precious resource). Since there are as many long options as one wants,
we can leave compatibility code with the long options.

1 Year 2000.

Chapter 10: Frequently asked questions 89

10.3.3 Why not having used yacc and such

There are several reasons why we decided not to use grammars to parse the files. Firstly it
would have made the design of the style sheets much more tricky, and today a2ps would know
only 4 or 5 languages.

Secondly, it limits the number of persons who could build a style sheet.
Thirdly, we did not feel the need for such a powerful tool: handling the keywords and the

sequences is just what the users expect.
Fourthly, any extension of a2ps would have required to recompile.
And last but not least, using a parser requires that the sources are syntactic bug free, which

is too strong a requirement.
Nevertheless, PreScript gives the possibility to have on the one hand a syntactic parser

which would produce PreScript code, and on the other hand, a2ps, which would make it
PostScript. This schema seems to us a good compromise. If it is still not enough for you, you
can use the library.

Appendix A: Glossary 90

Appendix A Glossary

This section settles some terms used through out this document, and provides the definitions
of some terms you probably want to know about.

Adobe Adobe is the firm who designed and owns the PostScript language. The patent
that printer manufacturers must pay to Adobe is the main reason why PostScript
printers are so expansive.

AFM file AFM stands for Adobe Font Metrics. These files contain everything one needs to
know about a font: the width of the characters, the available characters etc.

Charset
Code Set Cf. Encoding.

Delegate Another filter (application) which a2ps may call to process some files. This feature
is especially meant for page description files (see Section 4.10 [Your Delegations],
page 32).

DSC
Document Structuring Conventions

Because PostScript is a language, any file describing a document can have an ar-
bitrary complexity. To ease the post-processing of PostScript files, the document
should follow some conventions. Basically there are two kinds of conventions to
follow:

Page Independence
Special comments state where the pages begin and end. With these
comments (and the fact that the code describing a page starts and ends
somewhere, which is absolutely not necessary in PostScript), very simple
programs (such as psnup, psselect etc.) can post process PostScript
files.

Requirements
Special features may be needed to run correctly the file. Some comments
specify what services are expected from the printer (e.g., fonts, duplex
printing, color etc.), and other what features are provided by the file
itself (e.g., fonts, procsets etc.), so that a print manager can decide that
a file cannot be printed on that printer, or that it is possible if the file is
slightly modified (e.g., adding a required font not known by the printer)
etc.

The DSC are edited by Adobe. A document which respects them is said to be DSC
conformant.
a2ps follows all the DSC.

Duplex
DuplexTumble
DuplexNoTumble

To print Duplex is to print double-sided. There are two ways to print Duplex
depending whether the second face is printed upside-down or not:

DuplexTumble
DuplexTumble is suitable when (if it were to be bound) the document
would be bound along the short edge (for instance when you are printing
booklets).

Appendix A: Glossary 91

DuplexNoTumble
DuplexNoTumble corresponds to binding along the long edge of the
medium. A typical case is when printing one-up.

Encoding Association of human readable characters, and computers’ internal numbered rep-
resentation. In other words, they are the alphabets, which are different according
to your country/mother tongue. E.g.: ASCII, Latin 1, corresponding to Western
Europe etc.
To know more about encodings, see Section 6.1 [What is an Encoding], page 40.

Ghostscript

gs Ghostscript1, gs for short, is a full PostScript interpreter running under many
various systems (Unices, MS-DOS, Mac etc.). It comes with a large set of output
formats allowing many different applications:

Displaying
It can be used either to view PostScript files (in general thanks to a
graphic interface such as Ghostview or gv ...).

Converting
To may useful languages/formats: PDF, rewriting in portable
PostScript or Encapsulated PS etc.

Translating
to a printer dedicated language, e.g., PCL. In particular, thanks to
ghostscript, you may print PostScript files on non PostScript printers.

Face A virtual style given to some text. For instance, Keyword, Comment are faces.

Headings Everything that goes around the page and is not part of the text body. Typically
the title, footer etc.

Key Many objects used in a2ps, such as encodings, have both a key and a name. The
word name is used for a symbol, a label, which is only meant to be nice to read by
a human. For instance ‘ISO Latin 1’ is a name. a2ps never uses a name, but the
key.
A key is the identifier of a unique object. This is information that a2ps processes,
hence, whenever you need to specify an object to a2ps, use the key, not its name.
For instance ‘latin1’ is the unique identifier of the ‘ISO Latin 1’ encoding.

Logical page
Cf. Virtual page.

lhs
left hand side

See P-rule.

Medium Official name (by Adobe) given to the output physical support. In other words, it
means the description of a sheet, e.g., A4, Letter etc.

Name See Key.

Page A single side of a sheet.

Page Description Language
A language that describes some text (which may be enriched with pointers, pictures
etc.) and its layout. HTML, PostScript, LaTEX, roff and others are such languages.
A file written in those languages is not made to be read as is by a human, but to
be transformed (or compiled) into a readable form.

1 http://www.cs.wisc.edu/~ghost/index.html

http://www.cs.wisc.edu/~ghost/index.html

Appendix A: Glossary 92

PCL FIXME:

PFA file PostScript Font in ASCII format. This file can be directly down loaded to provide
support for another font.

PFB file PostScript Font in Binary format. In PFA files there are long sequences of hexadec-
imal digits. Here these digits are represented by their value, hence compressing 2
characters in a PFA into 1 in the PFB. This is the only advantage since a PFB file
cannot be directly sent to printer: it must first be decompressed (hence turned into
a PFA file) before being used.

PostScript PostScript is a page description language designed for Raster output devices. It is
even more powerful than that: unlike to HTML, or roff, but as TEX and LaTEX, it
is truly a programming language which main purpose is to draw (on sheets). Most
programs are a list of instructions that describes lines, shades of gray, or text to
draw on a page. This is the language that most printers understand.
Note that the fact that PostScript is a programming language is responsible of
both its success and its failure. It is a big win for the PostScript programmer who
can easily implement a lot of nice visual effects. It is a big loss because the page
descriptions can have an arbitrary complexity, hence rendering can be really slow
(remember the first Laser you had, or even Ghostscript. PDF has been invented by
Adobe to remedy these problems).
PostScript is a trademark of Adobe Systems Incorporated.

PPD file
PostScript Printer Description file

These files report everything one needs to know about a printer: the known fonts,
the patches that should be down loaded, the available memory, the trays, the way
to ask it duplex printing, the supported media, etc.
PostScript has pretended to be a device independent page description language, and
the PPD files are here to prove that device independence was a failure.

ProcSet Set of (PostScript) procedures.

Prologue PostScript being a language, a typical PostScript program (i.e. a typical PostScript
file) consists of two parts. The first part is composed of resources, such as fonts,
procsets, etc. and the second part of calls to these procedures. The first part is
called the prologue, and the second, the script.

P-rule Pretty printing rule. It is composed of a left-hand side, (lhs for short), and a right-
hand side, (rhs). The lhs describes when the rule is triggered (i.e., the pattern of
text to match), and the rhs specifies the pretty printed output. See Section 7.5.5
[P-Rules], page 59, for more semantical details, and see Section 7.6.5 [Syntax for the
P-Rules], page 63, for implementation.

psutils The psutils2 is a set of tools for PostScript post processing written by Angus Dug-
gan3. They let you resize the frame into which the page is drawn, reorder or select
pages, put several pages onto a single sheet, etc. To allow the psutils to run cor-
rectly, the PostScript files must be DSC conformant, and the bad news is that many
PostScript drivers produce files which are not. For some common cases (e.g., Mi-
cro$oft tools), Angus Duggan included in the package some tools (named fix...ps)
to fix typical problems. fixps is a collection of recipes on when to run what fix
tool.

2 http://www.dcs.ed.ac.uk/home/ajcd/psutils/index.html
3 http://www.dcs.ed.ac.uk/home/ajcd/

http://www.dcs.ed.ac.uk/home/ajcd/psutils/index.html
http://www.dcs.ed.ac.uk/home/ajcd/

Appendix A: Glossary 93

Raster Image Processor
RIP The hardware and/or software that translates data from a high-level language (e.g.,

PostScript) into dots or pixels in a printer or image setter.

Raster Output Device
Behind these words is hidden the general class of devices which have Pixels that can
be addressed individually: Laser, Ink or Dot printers, but also regular screens etc.
It is typically opposed to the class of devices which plot, i.e., have a pen that they
move on the paper.

rhs
right hand side

See P-rule.

RIP See Raster Image Processor.

Script See Prologue.

Sheet The physical support of the printing: it may support one or two pages, depending
on your printing options.

Style sheet
Set of rules used by a2ps to give a face to the strings of a file. In a2ps, each
programming language which is supported is defined via one style-sheet.

Tumble See Duplex.

Virtual page
Area on a physical page in which a2ps draws the content of a file. There may be
several virtual pages on a physical page. (“virtual page” is the name recommended
by Adobe).

Appendix B: Genesis 94

Appendix B Genesis

Here are some words on a2ps and its history.

B.1 History

The initial version was a shell program written by Evan Kirshenbaum (evan@csli). It was
very slow and contained many bugs.

A new version was written in C by Miguel Santana (Miguel.Santana@st.com) to improve
execution speed and portability. Many new features and improvements have been added since
this first version. Many contributions (changes, fixes, ideas) were done by a2ps users in order
to improve it.

From the latest version from Miguel Santana (4.3), Emmanuel Briot implemented bold faces
for keywords in Ada, C and C++.

From that version, Akim Demaille (akim@freefriends.org) generalized the pretty-printing
capabilities, implemented more languages support, and other features.

B.2 Thanks

Patrick Andries, from Alis Technologies inc.1 and Roman Czyborra (see his home page2),
provided us with important information on encodings. We strongly recommend that you go and
read these pages: there is a lot to learn.

Juliusz Chroboczek worked a lot on the integration of the products of Ogonkify (such as
Latin 2 etc. fonts) in a2ps. Without his help, and the time is devoted to both a2ps and
ogonkify, many non west-European people would still be unable to print easily texts written
in their mother tongue.

Denis Girou brought a constant and valuable support through out the genesis of pretty-
printing a2ps. His comments on both the program and the documentation are the origin of
many pleasant features (such as ‘--prologue’).

Alexander Mai provided us with invaluable help in the development. He spotted several
times subtle bugs in a2ps and the contributions, he keeps a vigilant eye on portability issues,
he checks and improves the style sheets, and he maintains a port of a2ps for OS/2.

Graham Jenkins, with an extraordinary regularity, tortures a2ps on weird systems that
nobody ever heard of ‘:)’. Graham is usually the ultimate test: if he says I can release a2ps,
I rest reassured that, yes, this time it will compile! If a2ps works today on your system, you
should thank Graham too!

Of course this list is not up to date, and never will. We would like to thank everybody that
helped us, talked to us, and even criticized us with the intention to help us to improve a2ps.
Of course it doesn’t sound right, yes it sounds a little childish, but we can tell you: we would
never have the strength and the faith of building and maintaining a2ps without the support of
all these guys.

While a2ps is finally just a couple of bits on a hard disk, to us it is an adventure we live with
other humans, and, boy, that’s a darn good pleasure!

1 http://www.alis.com/
2 http://czyborra.com/

http://www.alis.com/
http://czyborra.com/

Appendix B: Genesis 95

B.3 Translators

Some people worked on the translation of a2ps:
− Daniele Ghiotti (Italian)
− Tomek Burdziak (Polish)
− Miguel A. Varo (mvaro@dlsi.ua.es) (Maintains Spanish and Catalan)
− Michael Wiedmann (mw@miwie.in-berlin.de) (Maintains German)
− Christian Kirsch (ck@held.mind.de) (German)
− Erwin Dieterich (bamse@gmx.de) (German)
− Juliusz Chroboczek (jec@dcs.ed.ac.uk) (Polish) He is also the author of Ogonkify (see

section “Overview” in Ogonkify manual).
− Marcel van der Laan (Marcel.van.der.Laan@home.ict.nl) (Dutch)
− Lorenzo M. Catucci (lorenzo@argon.roma2.infn.it) (Maintains Italian)
− Choi Jun Ho (junker@jazz.snu.ac.kr) (Korean)
− Turgut Uyar (uyar@cs.itu.edu.tr) (Turkish)
− Jiri Pavlovsky (pavlovsk@ff.cuni.cz) (Maintains Czech)
− Peter Nilsson (pnidv96@student.hv.se) (Maintains Swedish)
− Pedro Miguel Marques Morais (pmmm@camoes.rnl.ist.utl.pt) (Maintains Portugese)
− Vladimir Vodolazkiy (voldemarus@geocities.com) (Russian) has a home page3.
− Paulo Matos (pjsm@students.fct.unl.pt) (Portugese)
− Jon Ross (jonr@sdata.no) (Maintains Norwegian)
− Igor Furlan (IgorF@ix.netcom.com) (Maintains Slovenian)
− Marcin ’Qrczak’ Kowalczyk (qrczak@knm.org.pl) (Polish)
− Tijs van Bakel (smoke@casema.net) (Maintains Dutch)
− Dmitry S. Sivachenko (dima@Chg.RU) (Maintains Russian)

3 http://come.to/vodolaz

http://come.to/vodolaz

Appendix C: Copying 96

Appendix C Copying

The subroutines and source code in the a2ps package are "free"; this means that everyone
is free to use them and free to redistribute them on a free basis. The a2ps-related programs are
not in the public domain; they are copyrighted and there are restrictions on their distribution,
but these restrictions are designed to permit everything that a good cooperating citizen would
want to do. What is not allowed is to try to prevent others from further sharing any version of
these programs that they might get from you.

Specifically, we want to make sure that you have the right to give away copies of the programs
that relate to a2ps, that you receive source code or else can get it if you want it, that you can
change these programs or use pieces of them in new free programs, and that you know you can
do these things.

To make sure that everyone has such rights, we have to forbid you to deprive anyone else of
these rights. For example, if you distribute copies of the a2ps-related code, you must give the
recipients all the rights that you have. You must make sure that they, too, receive or can get
the source code. And you must tell them their rights.

Also, for our own protection, we must make certain that everyone finds out that there is no
warranty for the programs that relate to a2ps. If these programs are modified by someone else
and passed on, we want their recipients to know that what they have is not what we distributed,
so that any problems introduced by others will not reflect on our reputation.

The precise conditions of the licenses for the programs currently being distributed that relate
to a2ps are found in the General Public Licenses that accompany them.

Concept Index 97

Concept Index

%

‘%!’ . 31

.

‘.a2ps’ . 28

.afm . 38

.edf . 41

.map . 37

.pfa . 38

.pfb . 38

:

‘:’ . 30

A

‘a2ps-site.cfg’ . 28

‘a2ps.cfg’ . 28

‘A2PS_CONFIG’ . 28

A2PS_VERBOSITY . 13

‘a2psrc’ . 28

Adobe . 90

AFM . 38, 90

Alphabets . 59

Angus Duggan . 92

‘AppendLibraryPath:’ . 28

B

banner . 87

Bug . 2

C

C-char . 66

C-string . 66

Charset . 90

Code Set . 90

Command line options . 10

Configuration Files . 28

Copying . 96

D
‘DefaultPrinter:’ . 30

Delegate . 90

‘Delegation:’ . 33

Delegations . 33

display . 5

Document Structuring Conventions 90

DSC . 72, 90

Duplex. 21, 90

DuplexNoTumble . 90

DuplexTumble . 90

E
EDF . 41

elm . 8

Encoding . 18, 91

Escape . 31

Escapes . 22

F
Face . 58, 91

file . 5

First Page . 1

G
Ghostscript . 91

gs . 91

H
Headers . 16

Headings . 91

I
‘Include:’ . 28

K
key . 59

Key . 91

Keyword . 60

Concept Index 98

L
lhs . 60

libpaper . 14

Library files . 36

‘LibraryPath:’ . 28

Logical page . 91

M
make_fonts_map.sh . 38

Map files . 37

Markers . 61

Medium . 91

‘Medium:’ . 29

N
Non PostScript printers . 30

O
Operator . 60

Optimize for Portability . 72

Optimize for Speed . 72

Optional entries . 61

Options . 10

‘Options:’ . 29

‘OutputFirstLine:’ . 31

P
P-rule . 92

P-Rule . 60

Page . 91

Page Description Language . 91

Page device . 22

Page prefeed . 22

Page Range . 17

‘PageLabelFormat:’ . 31

paperconf . 14

PCL . 92

PFA file . 92

PFB file . 92

pine . 8

PostScript . 92

PostScript Quality . 72

PPD file . 92

Predefined Variables . 32

‘PrependLibraryPath:’ . 28

PreScript . 55

Pretty printing . 45

‘Printer:’ . 30

ProcSet . 92

Prologue . 18, 92

psutils . 92

R
Raster Output Device . 93

Regular expression . 64

rhs . 60

Rule . 60

S
Script . 93

Separator . 59

Sequences . 61

setpagedevice. 22

Sheet . 93

‘sheets.map’ . 39, 59

statusdict . 22

Style sheet . 59, 93

Symbol conversion . 45

T
‘TemporaryDirectory:’ . 35

Tumble . 93

U
Under lay . 17

‘UnknownPrinter:’ . 30

‘UserOption:’ . 31

V
Variable . 31

‘Variable:’ . 32

Variables, predefined . 32

Virtual page . 93

void . 5

W
Water mark . 17

	Introduction
	Description
	Reporting Bugs
	{} Mailing List
	Helping the Development

	User's Guide
	Purpose
	How to print
	Basics for Printing
	Special Printers
	Using Delegations
	Printing Duplex
	Checking the Defaults

	Important parameters
	Localizing
	Interfacing with Other Programs
	Interfacing With a Mailer
	Netscape

	Invoking {}
	Command line options
	Tasks Options
	Global Options
	Sheet Options
	Page Options
	Headings Options
	Input Options
	Pretty Printing Options
	Output Options
	PostScript Options

	Escapes
	Use of Escapes
	General Structure of the Escapes
	Available Escapes

	Configuration Files
	Including Configuration Files
	Your Library Path
	Your Default Options
	Your Media
	Your Printers
	Your Shortcuts
	Your PostScript magic number
	Your Page Labels
	Your Variables
	Defining Variables
	Predefined Variables

	Your Delegations
	Defining a Delegation
	Guide Line for Delegations
	Predefined Delegations

	Your Internal Details

	Library Files
	Documentation Format
	Map Files
	Font Files
	Fonts Map File
	Fonts Description Files
	Adding More Font Support

	Style Sheet Files

	Encodings
	What is an Encoding
	Encoding Files
	Encoding Map File
	Encoding Description Files
	Some Encodings

	Pretty Printing
	Syntactic limits
	Known Style Sheets
	Type Setting Style Sheets
	Symbol
	PreScript
	Syntax
	PreScript Commands
	Examples

	
	Special characters
	Commands
	Differences with

	

	Faces
	Style Sheets Semantics
	Name and key
	Comments
	Alphabets
	Case sensitivity
	P-Rules
	Sequences
	Optional entries

	Style Sheets Implementation
	A Bit of Syntax
	Style Sheet Header
	Syntax of the Words
	Inheriting from Other Style Sheets
	Syntax for the P-Rules
	Declaring the keywords and the operators
	Declaring the sequences
	Checking a Style Sheet

	A Tutorial on Style Sheets
	Example and syntax
	Implementation
	The Entry in sheets.map
	More Sophisticated Rules
	Guide Line for Distributed Style Sheets

	PostScript
	Foreword: Good and Bad PostScript
	Page Device Options
	Statusdict Options
	Colors in PostScript
	{} PostScript Files
	Designing PostScript Prologues
	Definition of the faces
	Prologue File Format
	A step by step example

	Contributions
	card
	Invoking card
	Caution when Using card

	fixps
	Invoking fixps

	fixnt
	Invoking fixnt

	pdiff
	Invoking pdiff

	psmandup
	Invoking psmandup

	psset
	Invoking psset

	Frequently asked questions
	Why Does...?
	Why Does it Print Nothing?
	Why Does it Print in Simplex?
	Why Does it Print in Duplex?
	Why Does it Not Fit on the Paper?
	Why Does it Print Junk?
	Why Does it Say my File is Binary?
	Why Does it Refuse to Change the Font Size

	How Can I ...?
	How Can I Leave Room for Binding?
	How Can I Print stdin?
	How Can I Change the Fonts?
	How Can I Simulate the Old Option -b?
	How Can I Pass Options to lpr
	How Can I Print on Non PostScript Printers?
	How Can I Print Man Pages with Underlines

	Please tell me...
	Is {} Y2K compliant?
	Why Have the Options Changed?
	Why not having used yacc and such

	Glossary
	Genesis
	History
	Thanks
	Translators
	Copying
	Concept Index

