
GNAT Coding Style
A guide for GNAT developers

Ada Core Technologies, Inc.

Chapter 1: General 1

1 General

Most of GNAT is written in Ada using a consistent style to ensure readability of the code.
This document has been written to help maintain this consistent style, while having a large
group of developers work on the compiler.
For the coding style in the C parts of the compiler and run time, see the GNU Coding
Guidelines.
This document is structured after the Ada Reference manual. Those familiar with that
document should be able to quickly lookup style rules for particular constructs.

Chapter 2: Lexical Elements 2

2 Lexical Elements

2.1 Character Set and Separators

• The character set used should be plain 7-bit ASCII. The only separators allowed are
space and the end-of-line sequence. No other control character or format effector (such
as HT, VT, FF) should be used. The normal end-of-line sequence is used, which may
be LF, CR/LF or CR, depending on the host system. An optional SUB (16#1A#)
may be present as the last character in the file on hosts using that character as file
terminator.

• Files that are checked in or distributed should be in host format.
• A line should never be longer than 79 characters, not counting the line separator.
• Lines must not have trailing blanks.
• Indentation is 3 characters per level for if statements, loops, case statements. For exact

information on required spacing between lexical elements, see file ‘style.adb’.

2.2 Identifiers

• Identifiers will start with an upper case letter, and each letter following an underscore
will be upper case. Short acronyms may be all upper case. All other letters are lower
case. An exception is for identifiers matching a foreign language. In particular, we use
all lower case where appropriate for C.

• Use underscores to separate words in an identifier.
• Try to limit your use of abbreviations in identifiers. It is ok to make a few abbreviations,

explain what they mean, and then use them frequently, but don’t use lots of obscure
abbreviations. An example is the ALI word which stands for Ada Library Information
and is by convention always written in upper-case when used in entity names.

procedure Find_ALI_Files;

• Don’t use the variable ‘I’, use ‘J’ instead, ‘I’ is too easily mixed up with ‘1’ in some
fonts. Similarly don’t use the variable ‘O’, which is too easily mixed up with ‘0’.

2.3 Numeric Literals

• Numeric literals should include underscores where helpful for readability.
1_000_000

16#8000_000#

3.14159_26535_89793_23846

2.4 Reserved Words

• Reserved words use all lower case.
return else

• The words ‘Access’, ‘Delta’ and ‘Digits’ are capitalized when used as
attribute_designator.

Chapter 2: Lexical Elements 3

2.5 Comments

• Comment start with ‘-- ’ (i.e. ‘--’ followed by two spaces). The only exception to this
rule (i.e. one space is tolerated) is when the comment ends with ‘ --’. It also accepted
to have only one space between ‘--’ and the start of the comment when the comment
is at the end of a line, after some Ada code.

• Every sentence in a comment should start with an upper-case letter (including the first
letter of the comment).

• When declarations are commented with “hanging” comments, i.e. comments after the
declaration, there is no blank line before the comment, and if it is absolutely necessary
to have blank lines within the comments these blank lines do have a ‘--’ (unlike the
normal rule, which is to use entirely blank lines for separating comment paragraphs).
The comment start at same level of indentation as code they are commenting.

z : Integer;

-- Integer value for storing value of z

--

-- The previous line was a blank line.

• Comments that are dubious or incomplete or comment on possibly wrong or incomplete
code should be preceded or followed by ‘???’.

• Comments in a subprogram body must generally be surrounded by blank lines, except
after a ‘begin’:

begin

-- Comment for the next statement

A := 5;

-- Comment for the B statement

B := 6;

• In sequences of statements, comments at the end of the lines should be aligned.
My_Identifier := 5; -- First comment
Other_Id := 6; -- Second comment

• Short comments that fit on a single line are not ended with a period. Comments taking
more than a line are punctuated in the normal manner.

• Comments should focus on why instead of what. Descriptions of what subprograms do
go with the specification.

• Comments describing a subprogram spec should specifically mention the formal argu-
ment names. General rule: write a comment that does not depend on the names of
things. The names are supplementary, not sufficient, as comments.

• Do NOT put two spaces after periods in comments.

Chapter 3: Declarations and Types 4

3 Declarations and Types

• In entity declarations, colons must be surrounded by spaces. Colons should be aligned.
Entity1 : Integer;

My_Entity : Integer;

• Declarations should be grouped in a logical order. Related groups of declarations may
be preceded by a header comment.

• All local subprograms in a subprogram or package body should be declared before the
first local subprogram body.

• Don’t declare local entities that hide global entities.
• Don’t declare multiple variables in one declaration that spans lines. Start a new dec-

laration on each line, instead.
• The defining_identifiers of global declarations serve as comments of a sort. So

don’t choose terse names, but look for names that give useful information instead.
• Local names can be shorter, because they are used only within one context, where

comments explain their purpose.

Chapter 4: Expressions and Names 5

4 Expressions and Names

• Every operator must be surrounded by spaces, except for the exponentiation operator.
E := A * B**2 + 3 * (C - D);

• When folding a long line, fold before an operator, not after.
• Use parentheses where they make the intended order of evaluation clearer:

(A / B) * C

Chapter 5: Statements 6

5 Statements

5.1 Simple and Compound Statements

• Use only one statement or label per line.

• A longer sequence_of_statements may be divided in logical groups or separated from
surrounding code using a blank line.

5.2 If Statements

• When the ‘if’, ‘elsif’ or ‘else’ keywords fit on the same line with the condition and
the ‘then’ keyword, then the statement is formatted as follows:

if condition then

...

elsif condition then

...

else

...

end if;

When the above layout is not possible, ‘then’ should be aligned with ‘if’, and condi-
tions should preferably be split before an ‘and’ or ‘or’ keyword a follows:

if long_condition_that_has_to_be_split

and then continued_on_the_next_line

then

...

end if;

The ‘elsif’, ‘else’ and ‘end if’ always line up with the ‘if’ keyword. The preferred
location for splitting the line is before ‘and’ or ‘or’. The continuation of a condition is
indented with two spaces or as many as needed to make nesting clear. As exception, if
conditions are closely related either of the following is allowed:

if x = lakdsjfhlkashfdlkflkdsalkhfsalkdhflkjdsahf

or else

x = asldkjhalkdsjfhhfd

or else

x = asdfadsfadsf

then

if x = lakdsjfhlkashfdlkflkdsalkhfsalkdhflkjdsahf or else

x = asldkjhalkdsjfhhfd or else

x = asdfadsfadsf

then

• Conditions should use short-circuit forms (‘and then’, ‘or else’).

• Complex conditions in if statements are indented two characters:
if this_complex_condition

and then that_other_one

and then one_last_one

then

...

Chapter 5: Statements 7

• Every ‘if’ block is preceded and followed by a blank line, except where it begins or
ends a sequence_of_statements.

A := 5;

if A = 5 then

null;

end if;

A := 6;

5.3 Case Statements

• Layout is as below. For long case statements, the extra indentation can be saved by
aligning the when clauses with the opening case.

case expression is

when condition =>

...

when condition =>

...

end case;

5.4 Loop Statements

When possible, have ‘for’ or ‘while’ on one line with the condition and the ‘loop’
keyword.

for J in S’Range loop

...

end loop;

If the condition is too long, split the condition (see “If statements” above) and align
‘loop’ with the ‘for’ or ‘while’ keyword.

while long_condition_that_has_to_be_split

and then continued_on_the_next_line

loop

...

end loop;

If the loop_statement has an identifier, it is laid out as follows:
Outer : while not condition loop

...

end Outer;

5.5 Block Statements

• The ‘declare’ (optional), ‘begin’ and ‘end’ statements are aligned, except when the
block_statement is named. There is a blank line before the ‘begin’ keyword:

Some_Block : declare

...

begin

...

end Some_Block;

Chapter 6: Subprograms 8

6 Subprograms

6.1 Subprogram Declarations

• Do not write the ‘in’ for parameters, especially in functions:
function Length (S : String) return Integer;

• When the declaration line for a procedure or a function is too long, fold it. In this case,
align the colons, and, for functions, the result type.

function Head

(Source : String;

Count : Natural;

Pad : Character := Space)

return String;

• The parameter list for a subprogram is preceded by a space:
procedure Func (A : Integer);

6.2 Subprogram Bodies

• The functions and procedures should always be sorted alphabetically in a compilation
unit.

• All subprograms have a header giving the function name, with the following format:

-- My_Function --

procedure My_Function is

begin

Note that the name in the header is preceded by a single space, not two spaces as for
other comments.

• Every subprogram body must have a preceding subprogram_declaration.
• If there any declarations in a subprogram, the ‘begin’ keyword is preceded by a blank

line.
• If the declarations in a subprogram contain at least one nested subprogram body, then

just before the of the enclosing subprogram ‘begin’, there is a line:
-- Start of processing for Enclosing Subprogram

begin

Chapter 7: Packages and Visibility Rules 9

7 Packages and Visibility Rules

• All program units and subprograms have their name at the end:
package P is

...

end P;

• We will use the style of ‘use’-ing ‘with’-ed packages, with the context clauses looking
like:

with A; use A;

with B; use B;

• Names declared in the visible part of packages should be unique, to prevent name
clashes when the packages are ‘use’d.

package Entity is

type Entity_Kind is ...;

...

end Entity;

• After the file header comment, the context clause and unit specification should be the
first thing in a program_unit.

Chapter 8: Program Structure and Compilation Issues 10

8 Program Structure and Compilation Issues

• Every GNAT source file must be compiled with the ‘-gnatg’ switch to check the coding
style (Note that you should look at ‘style.adb’ to see the lexical rules enforced by
‘-gnatg’).

• Each source file should contain only one compilation unit.
• Filenames should be 8 characters or less followed by the ‘.adb’ extension for a body or

‘.ads’ for a spec.
• Unit names should be distinct when krunched to 8 characters (see ‘krunch.ads’) and

the filenames should match the unit name, except that they are all lower case.

