GNAT Reference Manual

GNAT Reference Manual , March 24, 2015
AdaCore
Copyright (© 2008-2015, Free Software Foundation

Table of Contents

1 About This Guide.............................. 2
1.1 What This Reference Manual Contains......................... 2
1.2 Conventions.t 3
1.3 Related Information......... 3

2 Implementation Defined Pragmas............. 5
2.1 Pragma Abort_Defer......... ... 5
2.2 Pragma Abstract_State.......... ... 5
2.3 Pragma Ada_83 i 5
2.4 Pragma Ada_95. 6
2.5 Pragma Ada_05.o 6
2.6 Pragma Ada_2005.ot 6
2.7 Pragma Ada_12. 6
2.8 Pragma Ada_2012. i 7
2.9 Pragma Allow_Integer_ Address................ccoiiiiiiii... 7
2.10 Pragma Annotate............cooiiiiiiiii i 8
211 Pragma ASSert.......oouutittii e 8
2.12 Pragma Assert_ And_Cut........... ..o 9
2.13 Pragma Assertion_Policy......... ... o i 9
2.14 Pragma ASSUINEointtt e 11
2.15 Pragma Assume_No_Invalid_Values........................... 11
2.16 Pragma Async_Readers......... ... i 12
2.17 Pragma Async Writers. ...t 12
2.18 Pragma Attribute_Definition............ 12
2.19 Pragma C_Pass_By_Copycoviiiiiiiiiiiiiiii., 12
2.20 Pragma Check....... .o 13
2.21 Pragma Check_Float_Overflow 13
2.22 Pragma Check_-Name 14
2.23 Pragma Check_Policyo 14
2.24 Pragma CIL_Constructoroviiriiiiiiineeninnannn. 15
2.25 Pragma Commentoiiuiiiiiiiii 15
2.26 Pragma Common_Object ..., 16
2.27 Pragma Compile_Time_Error 16
2.28 Pragma Compile_Time_-Warningoooin.. 16
2.29 Pragma Compiler_Unit............ciiiiiiiii ., 17
2.30 Pragma Compiler_Unit_Warning 17
2.31 Pragma Complete_Representation............................ 17
2.32 Pragma Complex_Representation............................. 17
2.33 Pragma Component_Alignmentcoo.... 18
2.34 Pragma Contract_Cases........cooviriieeiiinenninennnn... 19
2.35 Pragma Convention_Identifier.............. 20
2.36 Pragma CPP_Class ... 20
2.37 Pragma CPP_Constructor............ ..., 20

2.38
2.39
2.40
241
2.42
2.43
2.44
2.45
2.46
2.47
2.48
2.49
2.50
2.51
2.52
2.53
2.54
2.55
2.56
2.57
2.58
2.59
2.60
2.61
2.62
2.63
2.64
2.65
2.66
2.67
2.68
2.69
2.70
2.71
2.72
2.73
2.74
2.75
2.76
2.77
2.78
2.79
2.80
2.81
2.82
2.83
2.84
2.85

Pragma CPP_Virtual i 21
Pragma CPP_Vtable....... ... i 21
Pragma CPU 21
Pragma Debug......... ... i 22
Pragma Debug_Policy.............co i 22
Pragma Default_Scalar_Storage_Order........................ 22
Pragma Default_Storage_Pool............. 23
Pragma Depends. ... 23
Pragma Detect_Blocking i i i 24
Pragma Disable_Atomic_Synchronization..................... 24
Pragma Dispatching_Domain.................. 24
Pragma Effective_Reads........... ... i 24
Pragma Effective_.Writes 24
Pragma Elaboration_Checks.............. oL, 24
Pragma Eliminate o i i 25
Pragma Enable_Atomic_Synchronization 26
Pragma Export_Function oL 26
Pragma Export_Object ... 27
Pragma Export_Procedure.............ol 27
Pragma Export_Value............ 28
Pragma Export_Valued_Procedure 29
Pragma Extend_System............o it 30
Pragma Extensions_Allowed.........., 30
Pragma External...... o 30
Pragma External_Name_Casing 31
Pragma Fast_Math.......... ... i 32
Pragma Favor_Top_Level......... 32
Pragma Finalize_Storage_ Only 32
Pragma Float_Representation.................., 32
Pragma Global 33
Pragma Ident....... ... i 33
Pragma Ignore_ Pragma oL 33
Pragma Implementation_Defined 33
Pragma Implemented 34
Pragma Implicit_Packing.................... i i i i 34
Pragma Import_Functiono ..o oL 35
Pragma Import_Objectcoo i 36
Pragma Import_Procedure L. 36
Pragma Import_Valued_Procedure 37
Pragma Independent.......... 38
Pragma Independent_Components............................ 38
Pragma Initial_Conditiono .. 38
Pragma Initialize_Scalars............. oL 39
Pragma Initializes.......... ..o o i 39
Pragma Inline_ Always ... 39
Pragma Inline_Generic...............co o i 40
Pragma Interface i 40

Pragma Interface_Name............ it 40

ii

2.86

2.87

2.88

2.89

2.90

291

2.92

2.93

2.94

2.95

2.96

2.97

2.98

2.99

2.100
2.101
2.102
2.103
2.104
2.105
2.106
2.107
2.108
2.109
2.110
2.111
2.112
2.113
2.114
2.115
2.116
2.117
2.118
2.119
2.120
2.121
2.122
2.123
2.124
2.125
2.126
2.127
2.128
2.129
2.130
2.131
2.132
2.133

Pragma Interrupt_Handler 40
Pragma Interrupt_State........o i, 41
Pragma Invariant 42
Pragma Java_Constructor............o, 42
Pragma Java_Interface...........o il 43
Pragma Keep_Names ... 43
Pragma License. ... 43
Pragma Link With 44
Pragma Linker_ Alias..........ciiiiiiiiiiiiininn... 44
Pragma Linker_Constructor................. ... 45
Pragma Linker_Destructor i il 45
Pragma Linker_Section........... ... oo i i 46
Pragma Lock_ Free...... i i 47
Pragma Loop_Invariant 47
Pragma Loop_Optimize ..., 47
Pragma Loop_Variant............ o i 48
Pragma Machine_Attributeo 49
Pragma Main. ... 49
Pragma Main_Storage ..., 49
Pragma No_Body..........o. i i 49
Pragma No_Elaboration_Code_All 50
Pragma No_Inline......... o i 50
Pragma No_ Return.......... ... o i i i 50
Pragma No_Run_Time............ o i ... o1
Pragma No_Strict_Aliasing........., 51
Pragma No_Tagged_Streamscooiiiiiian... 51
Pragma Normalize_Scalars............ot 52
Pragma Obsolescentcc i 53
Pragma Optimize_Alignment............... 54
Pragma Ordered...... ..., 55
Pragma Overflow_Mode............ ..., 57
Pragma Overriding_Renamings........................ o7
Pragma Partition_Elaboration_Policy 57
Pragma Part_Of 58
Pragma Passive...... ... 58
Pragma Persistent_BSS....... 58
Pragma Polling 58
Pragma Post...... ..o 59
Pragma Postconditiono 59
Pragma Post_Class ...t 61
Pragma Pre ... 62
Pragma Preconditiono i 62
Pragma Predicate.......o i 63
Pragma Preelaborable_Initialization......................... 63
Pragma Prefix_Exception_Messages 64
Pragma Pre_Class ... 64
Pragma Priority_Specific_Dispatching 64

Pragma Profile 65

iii

2.134
2.135
2.136
2.137
2.138
2.139
2.140
2.141
2.142
2.143
2.144
2.145
2.146
2.147
2.148
2.149
2.150
2.151
2.152
2.153
2.154
2.155
2.156
2.157
2.158
2.159
2.160
2.161
2.162
2.163
2.164
2.165
2.166
2.167
2.168
2.169
2.170
2.171
2.172
2.173
2.174
2.175
2.176
2.177
2.178
2.179
2.180
2.181

Pragma Profile_Warningsl 67
Pragma Propagate_Exceptions.............................. 67
Pragma Provide_Shift_Operators............................ 67
Pragma Psect_Object.......... .o 68
Pragma Pure_Function............o 68
Pragma Rational 69
Pragma Ravenscar.........o i i 69
Pragma Refined _Depends.............o 69
Pragma Refined_Globalo .. 69
Pragma Refined_Posto i 69
Pragma Refined_State i 69
Pragma Relative_Deadlinet 69
Pragma Remote_Access_Type......cooviiiiiiiiiinini... 70
Pragma Restricted_Run_Time............... 70
Pragma Restriction_-Warnings............. 70
Pragma Reviewable......... ... o i 71
Pragma Share_Generic.......... ..., 72
Pragma Shared i i 72
Pragma Short_Circuit_And_Or.............................. 72
Pragma Short_Descriptors ..., 72
Pragma Simple_Storage_Pool_Type 72
Pragma Source_File_ Name................. ..., 73
Pragma Source_File_ZName_Project.......................... 75
Pragma Source_Reference.............ol 75
Pragma SPARK Mode............. i, 75
Pragma Static_Elaboration_Desired 76
Pragma Stream_Convertooiiiiiiiiiii., 76
Pragma Style_Checks o o i 7
Pragma Subtitle........ ... 78
Pragma Suppressc.o.viiiii 79
Pragma Suppress_ All ... 79
Pragma Suppress_Debug_Info.......... 80
Pragma Suppress_Exception_Locations...................... 80
Pragma Suppress_Initialization..............., 80
Pragma Task_ Name. 81
Pragma Task_Storage.......... ..o, 81
Pragma Test_Casecooueininiiii i 82
Pragma Thread_Local_Storage 82
Pragma Time_Sliceo i 83
Pragma Title ... 83
Pragma Type_Invariant o L. 83
Pragma Type_Invariant_Class...................ccooie... 84
Pragma Unchecked_Union............... ..o, 84
Pragma Unevaluated_Use_Of_ Old........................... 84
Pragma Unimplemented _Unit................, 85
Pragma Universal_Aliasing............... 85
Pragma Universal Data................ooooi .. 85

Pragma Unmodified...........o i 86

iv

2.182 Pragma Unreferencedccoiiiiiiiiiiiiiann. 86
2.183 Pragma Unreferenced_Objectsiii.. 87
2.184 Pragma Unreserve_All_Interrupts 87
2.185 Pragma UnsSuppress.outetiitiiiiae e 87
2.186 Pragma Use_VADS_Size ..ottt 88
2.187 Pragma Validity_Checks ..., 88
2.188 Pragma Volatile 89
2.189 Pragma Warning_As_Error............... ..., 89
2.190 Pragma Warnings.ouuuuiiiinneeeniiiiiiannnn... 90
2.191 Pragma Weak_External.............. 93
2.192 Pragma Wide_Character_Encoding.......................... 93

Implementation Defined Aspects............. 95
3.1 Aspect Abstract_Stateoiiiiii 95
3.2 ANNOotate ... 95
3.3 Aspect Async_Readers......... 96
3.4 Aspect Async_ Writers.o 96
3.5 Aspect Contract_Cases.cooviiiiiiiiiiiiiiiaanann 96
3.6 Aspect Depends. 96
3.7 Aspect DImMension......... ..ot 96
3.8 Aspect Dimension_System...............ciiiiiiiiiiii 96
3.9 Aspect Effective_Reads. ... 97
3.10 Aspect Effective_.Writes. ... 97
3.11 Aspect Favor_Top_Level i 97
3.12 Aspect Global ... 97
3.13 Aspect Initial_Condition, 98
3.14 Aspect Initializes 98
3.15 Aspect Inline_ Always ... 98
3.16 Aspect Invariant i 98
3.17 Aspect Invariant’Classt 98
3.18 Aspect Iterable 98
3.19 Aspect Linker_Section..............ooiiiiii i, 99
3.20 Aspect Lock_Free....... .o 99
3.21 Aspect No_Elaboration_Code_All............................. 99
3.22 Aspect No_Tagged_Streams ..., 99
3.23 Aspect Object_Size ... 99
3.24 Aspect Obsolescentoouiiiiii 99
3.25 Aspect Part_Of 99
3.26 Aspect Persistent_BSS 99
3.27 Aspect Predicate. 99
3.28 Aspect Pure_Function..............cooiiiiiiiiii 99
3.29 Aspect Refined_Depends...............oooiiiii .. 100
3.30 Aspect Refined_Global 100
3.31 Aspect Refined_Post..............ooiiiiiiiiiii i, 100
3.32 Aspect Refined_State 100
3.33 Aspect Remote_Access . Type.....covviviiiiiiiinninnn... 100
3.34 Aspect Scalar_Storage_Order.............. ... 100
3.35 Aspect Shared i 100

3.36 Aspect Simple_Storage_Pooll 100
3.37 Aspect Simple_Storage_Pool_Type 100
3.38 Aspect SPARK_Mode. ... 100
3.39 Aspect Suppress_-Debug_Info..............., 100
3.40 Aspect Suppress_Initialization............. 100
3.41 Aspect Test_Caset 100
3.42 Aspect Thread_Local_Storage............. ...t 101
3.43 Aspect Universal_Aliasing............ 101
3.44 Aspect Universal_Data............cciiiiii i 101
3.45 Aspect Unmodified 101
3.46 Aspect Unreferenced............... 101
3.47 Aspect Unreferenced_Objects ...t 101
3.48 Aspect Value_Size ... 101
3.49 Aspect Warnings.o 101

Implementation Defined Attributes 102
4.1 Attribute Abort_Signal.......... i 102
4.2 Attribute Address_Size......... ... i 102
4.3 Attribute Asm_Input....... ... 102
4.4 Attribute Asm_Output...... ... 102
4.5 Attribute Atomic_Always_Lock_Free 103
4.6 Attribute Bit ... 103
4.7 Attribute Bit_Position 103
4.8 Attribute Code_Address. ...t 103
4.9 Attribute Compiler_Version, 104
4.10 Attribute Constrained i 104
4.11 Attribute Default_Bit_Order 104
4.12 Attribute Default_Scalar_Storage Order..................... 104
4.13 Attribute Deref........ .. 104
4.14 Attribute Descriptor_Size ... 104
4.15 Attribute Elaborated i 105
4.16 Attribute Elab_Body.......o i 105
4.17 Attribute Elab_Spec 105
4.18 Attribute Elab_Subp_Body............l 105
4.19 Attribute Emax..... ... 105
4.20 Attribute Enabled 105
4.21 Attribute Enum_Rep...........o 106
4.22 Attribute Enum_Val 106
4.23 Attribute Epsilon.......... .. 106
4.24 Attribute Fast_Math......... 106
4.25 Attribute Fixed_Value i 107
4.26 Attribute From_Any 107
4.27 Attribute Has_Access_Values............., 107
4.28 Attribute Has_Discriminantscooeiiiinieeann... 107
4.29 Attribute Img 107
4.30 Attribute Integer_Value...........l 108
4.31 Attribute Invalid_Value 108
4.32 Attribute Iterable........... 108

vi

4.33
4.34
4.35
4.36
4.37
4.38
4.39
4.40
4.41
4.42
4.43
4.44
4.45
4.46
4.47
4.48
4.49
4.50
4.51
4.52
4.53
4.54
4.55
4.56
4.57
4.58
4.59
4.60
4.61
4.62
4.63
4.64
4.65
4.66
4.67
4.68
4.69
4.70
4.71
4.72
4.73
4.74

Attribute Large. ... 108
Attribute Library_Level...... oo i 108
Attribute Lock_Free i 108
Attribute Loop_Entry........ ... 109
Attribute Machine_Size i 109
Attribute Mantissa. ...t 109
Attribute Maximum_Alignment, 109
Attribute Mechanism_Codeooiii ... 109
Attribute Null_Parameter.............. 109
Attribute Object_Size. 110
Attribute OLld.o 111
Attribute Passed_By_Reference 111
Attribute Pool_Addressoouiiii i 111
Attribute Range_Length, 111
Attribute Ref. ... oo 111
Attribute Restriction_Set i, 111
Attribute Result 112
Attribute Safe_. Emax............ .. i 112
Attribute Safe_Large....... ..o 112
Attribute Safe_Small.......... 113
Attribute Scalar_Storage_Order............................. 113
Attribute Simple_Storage_Pool......... 114
Attribute Small. ... 115
Attribute Storage_Unit ... 115
Attribute Stub_Type...... ..o 115
Attribute System_Allocator_Alignment...................... 116
Attribute Target_Nameoo i 116
Attribute To_Address. ..ot 116
Attribute To_Any 116
Attribute Type_Class 116
Attribute Type_Key ... 117
Attribute TypeCodeo 117
Attribute UET_Address. ..o 117
Attribute Unconstrained_Array, 117
Attribute Universal_Literal_String........................... 117
Attribute Unrestricted_Access. 118
Attribute Update...... ..o 121
Attribute Valid_Scalarsccooiiiiiii i, 122
Attribute VADS_Sizeo 122
Attribute Value_Size ... 122
Attribute Wchar_T_Size, 122
Attribute Word_Size 123

vii

5 Standard and Implementation Defined

Restrictions 124
5.1 Partition-Wide Restrictions L. 124
5.1.1 Immediate_Reclamation................................. 124
5.1.2 Max_Asynchronous_Select_Nesting 124
5.1.3 Max_Entry_Queue_Length 124
5.1.4 Max_Protected_Entries............ ... i 124
5.1.5 Max_Select_Alternatives....................iiiiiiii.. 124
5.1.6 Max_Storage_At_Blocking..............o 125
5.1.7 Max_Task_Entries..............ooiiiiiiiiiii.. 125
5.1.8 Max_Tasks. ... 125
5.1.9 No_Abort_Statements.............. ..., 125
5.1.10 No_Access_Parameter_Allocators....................... 125
5.1.11 No_Access_Subprogramsc..c.evuiiinennnenn.. 125
5.1.12 No_Allocators.ooviii e 125
5.1.13 No_Anonymous_Allocators.....................ooo... 125
5.1.14 No_Calendar........ ..o, 125
5.1.15 No_Coextensionsueeereeeeeeiiiiiiiiiennn... 125
5.1.16 No_Default_Initialization............................... 125
5.1.17 No_Delayo 126
5.1.18 No_Dependence............coiiiiiiiiiiiiiiiiiiiin.. 126
5.1.19 No_Direct_Boolean_Operators...................co..un. 126
5.1.20 No_Dispatch........... 126
5.1.21 No_Dispatching_Calls ..., 126
5.1.22 No_Dynamic_Attachment 127
5.1.23 No_Dynamic_Priorities...................oooiiiii.. 127
5.1.24 No_Entry_Calls_In_Elaboration_Code 127
5.1.25 No_Enumeration . Maps............cooiiiiiiiiiii. .. 128
5.1.26 No_Exception_ Handlers............................... 128
5.1.27 No_Exception_Propagation............................. 128
5.1.28 No_Exception_Registration............................. 128
5.1.29 No_Exceptions........cciiiiiiiiiiiiiiiiianann... 128
5.1.30 No_Finalization........... ... 128
5.1.31 No_Fixed_Point.............. 129
5.1.32 No_Floating_Point o i 129
5.1.33 No_Implicit_Conditionals............................... 129
5.1.34 No_Implicit_Dynamic_Code 129
5.1.35 No_Implicit_Heap_Allocations.......................... 129
5.1.36 No_Implicit_Loopsooiiiiii i 130
5.1.37 No_Initialize_Scalars oo i 130
5.1.38 No_IO ... 130
5.1.39 No_Local_Allocatorsocoiiiiiiiiiiiiin. 130
5.1.40 No_Local_Protected_Objects, 130
5.1.41 No_Local_Timing_Events.................. 130
5.1.42 No_Long_Long_Integers............. ..., 130
5.1.43 No_Multiple_Elaboration............................... 130
5.1.44 No_Nested_Finalization 131
5.1.45 No_Protected_Type_Allocators......................... 131

viii

5.1.46 No_Protected_Types.......ccovviiiiiiiiiiiiiiia... 131
5.1.47 No_Recursion.............ooiiiiiiiiiiiiiiiii.. 131
5.1.48 No_Reentrancyo, 131
5.1.49 No_Relative_Delay, 131
5.1.50 No_Requeue_Statements L. 131
5.1.51 No_Secondary_Stackcooiiiiiiiiiiiinann. 131
5.1.52 No_Select_Statements............ ..., 131
5.1.53 No_Specific_Termination_Handlers 131
5.1.54 No_Specification_of_Aspect...............cooiiiiiii... 131
5.1.55 No_Standard_Allocators_After_Elaboration............. 132
5.1.56 No_Standard_Storage_Pools............................ 132
5.1.57 No_Stream_Optimizations............... ... 132
5.1.58 NoO_Streams.oiiiiiiii e, 132
5.1.59 No_Task_Allocators..........c.ooeiiiieiiiiieninana.. 132
5.1.60 No_Task_Attributes_Package........................... 132
5.1.61 No_Task_Hierarchy............ ... it 132
5.1.62 No_Task_Termination.................ooo ... 132
5.1.63 No_Tasking.........ccooeiiiiiiiii i 133
5.1.64 No_Terminate_Alternatives............................. 133
5.1.65 No_Unchecked_Access....... .o, 133
5.1.66 No_Use_ Of_Entityccoooiiiiiiiiiiii .. 133
5.1.67 Simple_Barriers........ ... 133
5.1.68 Static_Priorities.......... ... 133
5.1.69 Static_Storage_Size ... 133
5.2 Program Unit Level Restrictions 133
5.2.1 No_Elaboration_Codecoiiiiiiiiiiiiiiaan. 133
5.2.2 No_Entry_Queue...........cooiiiiiiiiiiiiiiiiiinian.. 134
5.2.3 No_Implementation_Aspect_Specifications 134
5.2.4 No_Implementation_Attributes.......................... 134
5.2.5 No_Implementation_Identifiers........................... 134
5.2.6 No_Implementation_Pragmas......................... ... 135
5.2.7 No_Implementation_Restrictions......................... 135
5.2.8 No_Implementation_Units.................. 135
5.2.9 No_Implicit_Aliasing, 135
5.2.10 No_Obsolescent_Features.............................. 135
5.2.11 No_Wide_Characters.c.ouuiiiiniinanninaann. 135
5.212 SPARK _O5. ... 135

6 Implementation Advice...................... 139
6.1 RM 1.1.3(20): Error Detectioncoiiiiiia... 139
6.2 RM 1.1.3(31): Child Units ..o, 139
6.3 RM 1.1.5(12): Bounded Errors...................coooiiia... 139
6.4 RM 2.8(16): Pragmas........c.oouiuiuiuiniiiiiiiinnnneann... 139
6.5 RM 2.8(17-19): Pragmas...........cooiiiiiiiinian.... 140
6.6 RM 3.5.2(5): Alternative Character Sets 140
6.7 RM 3.5.4(28): Integer Types..........coooiiiiiiiiiiin... 141
6.8 RM 3.5.4(29): Integer Typesc.vuiririiirinininanannn... 141
6.9 RM 3.5.5(8): Enumeration Values............................ 141

ix

6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21
6.22
6.23
6.24
6.25
6.26
6.27
6.28
6.29
6.30
6.31
6.32
6.33
6.34
6.35
6.36
6.37
6.38
6.39
6.40
6.41
6.42
6.43
6.44
6.45
6.46
6.47
6.48
6.49
6.50
6.51
6.52
6.53
6.54
6.55
6.56
6.57

RM 3.5.7(17): Float Types......ovviuiiiiiiiiiiiiiiian.n. 141

RM 3.6.2(11): Multidimensional Arrays..................... 142
RM 9.6(30-31): Duration’Smalloooio.... 142
RM 10.2.1(12): Consistent Representation................... 142
RM 11.4.1(19): Exception Information...................... 142
RM 11.5(28): Suppression of Checksoooo.... 143
RM 13.1 (21-24): Representation Clauses.................... 143
RM 13.2(6-8): Packed Types.........ccooiiiiiiiiiiiiiiinn. 143
RM 13.3(14-19): Address Clausescoooviiinn.. 144
RM 13.3(29-35): Alignment Clauses......................... 144
RM 13.3(42-43): Size Clauseso.uuieiinininiiininin.. 145
RM 13.3(50-56): Size Clausesoevevininininiinen.. 145
RM 13.3(71-73): Component Size Clauses................... 146
RM 13.4(9-10): Enumeration Representation Clauses........ 146
RM 13.5.1(17-22): Record Representation Clauses........... 146
RM 13.5.2(5): Storage Place Attributes..................... 147
RM 13.5.3(7-8): Bit Orderingc.oooiioa... 147
RM 13.7(37): Address as Private.................oooiina.. 147
RM 13.7.1(16): Address Operations......................... 147
RM 13.9(14-17): Unchecked Conversion 147
RM 13.11(23-25): Implicit Heap Usage 148
RM 13.11.2(17): Unchecked Deallocation.................... 148
RM 13.13.2(17): Stream Oriented Attributes................ 148
RM A.1(52): Names of Predefined Numeric Types........... 149
RM A.3.2(49): Ada.Characters.Handling 149
RM A.4.4(106): Bounded-Length String Handling 149
RM A.5.2(46-47): Random Number Generation 149
RM A.10.7(23): Get-Immediate.......................o..... 150
RM B.1(39-41): Pragma Exportoo.... 150
RM B.2(12-13): Package Interfaces.......................... 150
RM B.3(63-71): Interfacing with C............ 151
RM B.4(95-98): Interfacing with COBOL 152
RM B.5(22-26): Interfacing with Fortran.................... 152
RM C.1(3-5): Access to Machine Operations 153
RM C.1(10-16): Access to Machine Operations.............. 153
RM C.3(28): Interrupt Supportc.cooevuvuininn... 154
RM C.3.1(20-21): Protected Procedure Handlers 154
RM C.3.2(25): Package Interrupts 154
RM C.4(14): Pre-elaboration Requirements 154
RM C.5(8): Pragma Discard_Names 154
RM C.7.2(30): The Package Task_Attributes................ 154
RM D.3(17): Locking Policies.............oooiiiiiii.... 155
RM D.4(16): Entry Queuing Policies........................ 155
RM D.6(9-10): Preemptive Abort........................... 155
RM D.7(21): Tasking Restrictions........................... 155
RM D.8(47-49): Monotonic Timeoooia.... 155
RM E.5(28-29): Partition Communication Subsystem........ 156
RM F(7): COBOL Supportcooouviiiiiiinininennn... 156

6.58 RM F.1(2): Decimal Radix Support......................... 156
6.59 RM G: Numerics 156
6.60 RM G.1.1(56-58): Complex Types.........coovieviiinin... 156
6.61 RM G.1.2(49): Complex Elementary Functions.............. 157
6.62 RM G.2.4(19): Accuracy Requirements...................... 158
6.63 RM G.2.6(15): Complex Arithmetic Accuracy............... 158
6.64 RM H.6(15/2): Pragma Partition_Elaboration_Policy........ 158

7 Implementation Defined Characteristics ... 159

8 Intrinsic Subprograms....................... 176
8.1 Intrinsic Operators.ot 176
8.2 Compilation_-Date.......... ..o i 176
8.3 Compilation_Timeo 176
8.4 Enclosing Entity........ ... o 177
8.5 Exception_Information............ L 177
8.6 Exception_-MesSSageccouiiiiiiiiiiiiiiiii i 177
8.7 Exception-Name.......... ..., 177
8.8 File. oo 177
8.0 LN ..o 177
8.10 Shifts and Rotates.......... ... 177
8.11 Source_Locationo 178

9 Representation Clauses and Pragmas 179
9.1 Alignment Clausescouutiiiiiii e, 179
9.2 Size ClalSes . ..o 180
9.3 Storage_Size Clausesoittte i 181
9.4 Size of Variant Record Objects... ...t 182
9.5 Biased Representation o it 184
9.6 Value_Size and Object_Size Clausesccooviei. ... 184
9.7 Component_Size Clausesooiiiiiiiiineeeeeinnian 187
9.8 Bit_Order Clausesovviiiiiiiiiiiiiiiiii e 188
9.9 Effect of Bit_Order on Byte Ordering 189
9.10 Pragma Pack for Arrays ... 193
9.11 Pragma Pack for Records, 195
9.12 Record Representation Clauses................ccoviiiiinin. 196
9.13 Handling of Records with Holes............................. 197
9.14 Enumeration Clausesccoviiiiiiiiii .. 198
9.15 Address Clausesot 199
9.16 Use of Address Clauses for Memory-Mapped I/O............ 203
9.17 Effect of Convention on Representation...................... 204
9.18 Conventions and Anonymous Access Types.................. 205
9.19 Determining the Representations chosen by GNAT 206

10 Standard Library Routines................. 210

xi

xii

11 The Implementation of Standard I/0..... 221
11.1 Standard I/O Packages ..., 221
11.2 FORM Strings. .. .ouveenitii e 222
11.3 Direct IO, ..o 222
11.4 Sequential TO. 222
115 Text IO ..o 223

11.5.1 Stream Pointer Positioning............... 224
11.5.2 Reading and Writing Non-Regular Files 224
11.5.3 Get_Immediate i 225
11.5.4 Treating Text_IO Files as Streams...................... 225
11.5.5 Text_IO Extensions..........., 225
11.5.6 Text_IO Facilities for Unbounded Strings............... 225
11,6 Wide_Text IO . ..o 226
11.6.1 Stream Pointer Positioning................ 228
11.6.2 Reading and Writing Non-Regular Files................ 228
11.7 Wide_Wide_Text IO e 229
11.7.1 Stream Pointer Positioning............... 230
11.7.2 Reading and Writing Non-Regular Files................ 230
11.8 Stream_TO 230
11.9 Text Translation............. o i 231
11.10 Shared Files..... ..o 231
11.11 Filenames encoding...........ccouuiiiiiiiiiiieennnn... 232
11.12 File content encoding, 232
11.13 Open Modes. .. .ovveii e 233
11.14 Operations on C Streamscooiiiiiiieeeennnnnnnn. 233
11.15 Interfacing to C Streams......... ..., 236

12 The GNAT Library......................... 239
12.1 Ada.Characters.Latin_9 (a-chlat9.ads).................... 239
12.2 Ada.Characters.Wide_Latin_1 (a-cwilal.ads).............. 239
12.3 Ada.Characters.Wide_Latin_9 (a-cwilal.ads).............. 239
12.4 Ada.Characters. Wide_Wide_Latin_1 (a-chzlal.ads)........ 240
12.5 Ada.Characters. Wide_Wide_Latin_9 (a-chzla9.ads)........ 240
12.6 Ada.Containers.Formal_Doubly_Linked_Lists (a-cfdlli.ads)

.. 240
12.7 Ada.Containers.Formal_Hashed_Maps (a-cfhama.ads) 240
12.8 Ada.Containers.Formal_Hashed_Sets (a-cfhase.ads)........ 240
12.9 Ada.Containers.Formal_Ordered_Maps (a-cforma.ads) 241
12.10 Ada.Containers.Formal_Ordered_Sets (a-cforse.ads)...... 241
12.11 Ada.Containers.Formal_Vectors (a-cofove.ads) 241
12.12 Ada.Containers.Formal_Indefinite_ Vectors (a-cfinve.ads)

.. 241
12.13 Ada.Containers.Bounded_Holders (a-coboho.ads) 241
12.14 Ada.Command_Line.Environment (a-colien.ads)......... 242
12.15 Ada.Command_Line.Remove (a-colire.ads).............. 242
12.16 Ada.Command_Line.Response_File (a-clrefi.ads)........ 242
12.17 Ada.Direct_10.C_Streams (a-diocst.ads)................. 242

12.18 Ada.Exceptions.Is_Null_Occurrence (a-einuoc.ads) 242

12.19 Ada.Exceptions.Last_Chance_Handler (a-elchha.ads)..... 242
12.20 Ada.Exceptions.Traceback (a~exctra.ads) 242
12.21 Ada.Sequential 10.C_Streams (a-siocst.ads)............. 242
12.22 Ada.Streams.Stream_I0.C_Streams (a-ssicst.ads)........ 242
12.23 Ada.Strings.Unbounded. Text_IO (a-suteio.ads).......... 243
12.24 Ada.Strings. Wide_Unbounded. Wide_Text_IO (a-swuwti.ads)
.. 243
12.25 Ada.Strings. Wide_ Wide_Unbounded. Wide_ Wide_Text_IO
(8=SZUZTL.AAS) ..ottt 243
12.26 Ada.Text_10.C_Streams (a-tiocst.ads)................... 243
12.27 Ada.Text_10.Reset_Standard_Files (a-tirsfi.ads)........ 243
12.28 Ada.Wide_Characters.Unicode (a-wichun.ads) 243
12.29 Ada.Wide_Text_I0.C_Streams (a-wtcstr.ads) 243
12.30 Ada.Wide_Text_10.Reset_Standard_Files (a-wrstfi.ads).. 243
12.31 Ada.Wide_Wide_Characters.Unicode (a-zchuni.ads)...... 244
12.32 Ada.Wide_Wide_Text_10.C_Streams (a-ztcstr.ads) 244
12.33 Ada.Wide_Wide_Text_10.Reset_Standard_Files (a-zrstfi.ads)
.. 244
12.34 GNAT.Altivec (g-altive.ads)couvuiununenennn... 244
12.35 GNAT.Altivec.Conversions (g-altcon.ads)................ 244
12.36 GNAT.Altivec. Vector_Operations (g-alveop.ads) 244
12.37 GNAT.Altivec.Vector_Types (g-alvety.ads) 244
12.38 GNAT.Altivec.Vector_Views (g-alvevi.ads) 244
12.39 GNAT.Array_Split (g-arrspl.ads).........ccovvueuennn... 244
12.40 GNAT. AWK (g-awk.ads)ooiuinininininananann.. 245
12.41 GNAT.Bounded_Buffers (g-boubuf.ads)................... 245
12.42 GNAT.Bounded_Mailboxes (g-boumai.ads)................ 245
12.43 GNAT.Bubble_Sort (g-bubsor.ads)ooou.... 245
12.44 GNAT.Bubble_Sort_A (g-busora.ads)..................... 245
12.45 GNAT.Bubble_Sort_G (g-busorg.ads) 245
12.46 GNAT.Byte_Order_Mark (g-byorma.ads) 245
12.47 GNAT.Byte_Swapping (g-bytswa.ads).................... 245
12.48 GNAT.Calendar (g-calend.ads)coovvuinennn... 245
12.49 GNAT.Calendar.Time_IO (g-catiio.ads)................. 245
12.50 GNAT.CRC32 (g-crc32.ads) ...ovvvininiiiiananaenn. 246
12.51 GNAT.Case_Util (g-casuti.ads).......c.couveuvrereennn... 246
12.52 GNAT.CGI (g=cg1.adS) «ovvviriiiiiaiiiiiaia e 246
12.53 GNAT.CGI.Cookie (g-cgicoo.ads).ovvvurniuinennn.. 246
12.54 GNAT.CGI.Debug (g-cgideb.ads)............c.ocovunn... 246
12.55 GNAT.Command_Line (g-comlin.ads).................... 246
12.56 GNAT.Compiler_Version (g-comver.ads).................. 246
12.57 GNAT.Ctrl.C (g-ctrl_c.ads)ovurirniiiiiianinann. 246
12.58 GNAT.Current_Exception (g-curexc.ads)................. 246
12.59 GNAT.Debug_Pools (g-debpoo.ads)....................... 247
12.60 GNAT.Debug_Utilities (g-debuti.ads).................... 247
12.61 GNAT.Decode_String (g-decstr.ads)............oovvnen.. 247
12.62 GNAT.Decode_UTF8_String (g-deutst.ads).............. 247
12.63 GNAT.Directory-Operations (g-dirope.ads).............. 247

xiii

12.64
12.65
12.66
12.67
12.68
12.69
12.70
12.71
12.72
12.73
12.74
12.75
12.76
12.77
12.78
12.79
12.80
12.81
12.82
12.83
12.84
12.85
12.86
12.87
12.88
12.89
12.90
12.91
12.92
12.93
12.94
12.95
12.96
12.97
12.98
12.99
12.100
12.101
12.102
12.103
12.104
12.105
12.106
12.107
12.108
12.109
12.110
12.111

GNAT.Directory_Operations.Iteration (g-diopit.ads)..... 247
GNAT.Dynamic_.HTables (g-dynhta.ads) 247
GNAT.Dynamic_Tables (g-dyntab.ads) 247
GNAT.Encode_String (g-encstr.ads)..................... 248
GNAT.Encode_UTF8_String (g-enutst.ads).............. 248
GNAT.Exception_Actions (g-excact.ads)................. 248
GNAT.Exception_Traces (g-exctra.ads).................. 248
GNAT.Exceptions (g-expect.ads)couvuvuunnn... 248
GNAT.Expect (g-expect.ads)covuviuiuinininanan.. 248
GNAT.Expect. TTY (g-exptty.ads).........ccovvuiuinen.. 248
GNAT.Float_Control (g-flocon.ads)...................... 248
GNAT.Formatted_String (g-forstr.ads).................. 249
GNAT.Heap_Sort (g-heasor.ads)coovuvueuann... 249
GNAT.Heap_Sort_A (g-hesora.ads) 249
GNAT.Heap_Sort_G (g-hesorg.ads) 249
GNAT.HTable (g-htable.ads)c.cooviueuninann.... 249
GNAT.IO (g-10.8d8) « v tvveiieti e 249
GNAT.JIO_Aux (g-10_aux.ads)overererennnannnnnnn.. 249
GNAT.Lock_Files (g-locfil.ads).........covuinininennn.. 249
GNAT.MBBS_Discrete_Random (g-mbdira.ads)........... 250
GNAT.MBBS_Float_Random (g-mbflra.ads) 250
GNAT.MD5 (g md5.2adS) ...\ ovoeiiiiiiiiiiiiieieeenen. 250
GNAT.Memory_Dump (g-memdum.ads) 250
GNAT.Most_Recent_Exception (g-moreex.ads)............ 250
GNAT.OS_Lib (g-os_lib.ads)cccoiuiuinininan.... 250
GNAT . Perfect_Hash_Generators (g-pehage.ads)........... 250
GNAT.Random_Numbers (g-rannum.ads) 250
GNAT.Regexp (g-regexp.ads)ouvnrnreninnnnanennnnn.. 250
GNAT Registry (g-regist.ads)..........ocovvviiiiiinin.. 251
GNAT.Regpat (g-regpat.ads)ouvuinreninnnnenen.. 251
GNAT.Rewrite_Data (g-rewdat.ads)...................... 251
GNAT.Secondary_Stack_Info (g-sestin.ads).............. 251
GNAT.Semaphores (g-semaph.ads)..............oouoen... 251
GNAT .Serial_Communications (g-sercom.ads) 251
GNAT.SHAT (g-shal.ads).......covvuirininuaninnnnanen.. 251
GNAT.SHA224 (g-sha224.ads)oouvuiinannen.... 251

GNAT.SHA256 (g-sha256.ads)c.vvvevunnnnnn... 251

GNAT.SHA384 (g-sha384.ads)c.covvvveiunnann... 252

GNAT.SHA512 (g-shab12.ads)ccovviiininn.... 252

GNAT.Signals (g-signal.ads)oovuinrnuanennnn.. 252

GNAT.Sockets (g-socket.ads).........oovueuiinannn... 252

GNAT.Source_Info (g-souinf.ads)..........ccovvuennn... 252

GNAT.Spelling_Checker (g-speche.ads) 252

GNAT.Spelling_Checker_Generic (g-spchge.ads)......... 252

GNAT.Spitbol.Patterns (g-spipat.ads).................. 252

GNAT.Spitbol (g-spitbo.ads)oovvvuienineneen... 252

GNAT.Spitbol. Table_Boolean (g-sptabo.ads)............ 253

GNAT.Spitbol. Table_Integer (g-sptain.ads)............. 253

xiv

12.112 GNAT.Spitbol. Table_VString (g-sptavs.ads) 253
12.113 GNAT.SSE (g-sS€.2dS) ... c.ovuiuiiiiiiiiiiaiaian. 253
12.114 GNAT.SSE.Vector_Types (g-ssvety.ads) 253
12.115 GNAT.Strings (g-string.ads)c.ovvrereenenn.... 253
12.116 GNAT.String_Split (g-strspl.ads)ooounn. 253
12.117 GNAT.Table (g-table.ads)........c.ovuiueuninanninan... 253
12.118 GNAT.Task_Lock (g-tasloc.ads)........c.ouvuvreunnnn.. 253
12.119 GNAT.Time_Stamp (g-timsta.ads)...............c.o.o... 254
12.120 GNAT.Threads (g-thread.ads).............cccovuininn.. 254
12.121 GNAT.Traceback (g-traceb.ads)........................ 254
12.122 GNAT.Traceback.Symbolic (g-trasym.ads)............... 254
12.123 GNAT.UTF_32 (g-table.ads)c.couvreuenannnannn.. 254
12.124 GNAT.Wide_Spelling_Checker (g-u3spch.ads) 254
12.125 GNAT.Wide_Spelling_Checker (g-wispch.ads)........... 254
12.126 GNAT.Wide_String_Split (g-wistsp.ads) 254
12.127 GNAT.Wide_Wide_Spelling_Checker (g-zspche.ads)..... 254
12.128 GNAT.Wide_Wide_String_Split (g-zistsp.ads).......... 255
12.129 Interfaces.C.Extensions (i-cexten.ads) 255
12.130 Interfaces.C.Streams (i-cstrea.ads)..................... 255
12.131 Interfaces.Packed_Decimal (i-pacdec.ads) 255
12.132 Interfaces.VxWorks (i-vxwork.ads) 255
12.133 Interfaces. VxWorks.IO (i-vxwoio.ads)................... 255
12.134 System.Address_Image (s-addima.ads)................... 255
12.135 System.Assertions (s-assert.ads) 255
12.136 System.Atomic_Counters (s-atocou.ads)................. 255
12.137 System.Memory (S—memory.ads)cooueueuenen... 255
12.138 System.Multiprocessors (s-multip.ads).................. 256
12.139 System.Multiprocessors.Dispatching-Domains (s-mudido.ads)
.. 256
12.140 System.Partition_Interface (s-parint.ads)............... 256
12.141 System.Pool_Global (s-pooglo.ads)...................... 256
12.142 System.Pool_Local (s-p00loc.ads)..........covuenenen... 256
12.143 System.Restrictions (s-restri.ads)...................... 256
12.144 System.Rident (s-rident.ads)..............ccooiuin.n.. 256
12.145 System.Strings.Stream_Ops (s-ststop.ads).............. 257
12.146 System.Unsigned_Types (s-unstyp.ads).................. 257
12.147 System.Wch_Cnv (s-wchenv.ads)ovoviviininininnn.. 257
12.148 System.Wch_Con (s-wchcon.ads)ovvuveenn.... 257
13 Interfacing to Other Languages............ 258
13.1 Imterfacing to C......coo i 258
13.2 Interfacing to CH4 ... 259
13.3 Interfacing to COBOLo i, 259
13.4 Interfacing to Fortran.............. 260
13.5 Interfacing to non-GNAT Adacode 260

14 Specialized Needs Annexes................. 261

XV

xvi

15 Implementation of Specific Ada Features

... 262
15.1 Machine Code Insertions..............cooeiiiiieeeiiaainn. 262
15.2 GNAT Implementation of Tasking................... 264

15.2.1 Mapping Ada Tasks onto the Underlying Kernel Threads
... 264
15.2.2 Ensuring Compliance with the Real-Time Annex....... 265
15.3 GNAT Implementation of Shared Passive Packages.......... 265
15.4 Code Generation for Array Aggregates...................... 267
15.4.1 Static constant aggregates with static bounds........... 267
15.4.2 Constant aggregates with unconstrained nominal types.. 267
15.4.3 Aggregates with static bounds.............. 268
15.4.4 Aggregates with non-static bounds..................... 268
15.4.5 Aggregates in assignment statements................... 268

15.5 The Size of Discriminated Records with Default Discriminants
.. 269
15.6 Strict Conformance to the Ada Reference Manual 270
16 Implementation of Ada 2012 Features 271
17 Obsolescent Features 288
17.1 pragma No_Run_-Time........... 288
17.2 pragma Ravenscarcccoeuuiiiiiiiiiiieeeennnnnnn. 288
17.3 pragma Restricted_Run_Time............... 288
17.4 pragma Task_Info...... i 288
17.5 package System.Task_Info (s-tasinf.ads).................. 288
18 Compatibility and Porting Guide.......... 289
18.1 Writing Portable Fixed-Point Declarations 289
18.2 Compatibility with Ada 83........ 290
18.2.1 Legal Ada 83 programs that are illegal in Ada 95....... 290
18.2.2 More deterministic semantics........................... 292
18.2.3 Changed semantics......... ..o, 292
18.2.4 Other language compatibility issues 292
18.3 Compatibility between Ada 95 and Ada 2005................ 293
18.4 TImplementation-dependent characteristics................... 294
18.4.1 Implementation-defined pragmas....................... 294
18.4.2 Implementation-defined attributes...................... 294
18.4.3 Libraries........oouiiiiiiiiiiii e 294
18.4.4 Elaboration order............ ... i i 294
18.4.5 Target-specific aspectsvvviieiiineiin.n 295
18.5 Compatibility with Other Ada Systems...................... 295
18.6 Representation Clauses ..., 296
18.7 Compatibility with HP Ada 83............. 297

19 GNU Free Documentation License........ 298

Xvii

GNAT, The GNU Ada Development Environment

GCC version 5.3.0
AdaCore

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.3 or any later version published by the Free
Software Foundation; with no Invariant Sections, with the Front-Cover Texts being "GNAT
Reference Manual", and with no Back-Cover Texts. A copy of the license is included in the
section entitled [GNU Free Documentation License|, page 297.

Chapter 1: About This Guide 2

1 About This Guide

This manual contains useful information in writing programs using the GNAT compiler. It
includes information on implementation dependent characteristics of GNAT, including all
the information required by Annex M of the Ada language standard.

GNAT implements Ada 95, Ada 2005 and Ada 2012, and it may also be invoked in Ada
83 compatibility mode. By default, GNAT assumes Ada 2012, but you can override with a
compiler switch to explicitly specify the language version. (Please refer to the GNAT User’s
Guide for details on these switches.) Throughout this manual, references to ’Ada’ without
a year suffix apply to all the Ada versions of the language.

Ada is designed to be highly portable. In general, a program will have the same effect even
when compiled by different compilers on different platforms. However, since Ada is designed
to be used in a wide variety of applications, it also contains a number of system depen-
dent features to be used in interfacing to the external world. .. index:: Implementation-
dependent features

Note: Any program that makes use of implementation-dependent features may be non-
portable. You should follow good programming practice and isolate and clearly document
any sections of your program that make use of these features in a non-portable manner.

1.1 What This Reference Manual Contains

This reference manual contains the following chapters:

* [Implementation Defined Pragmas|, page 4, lists GNAT implementation-dependent

pragmas, which can be used to extend and enhance the functionality of the compiler.

* [Implementation Defined Attributes|, page 101, lists GNAT implementation-dependent
attributes, which can be used to extend and enhance the functionality of the compiler.

* [Standard and Implementation Defined Restrictions|, page 123, lists GNAT
implementation-dependent restrictions, which can be used to extend and enhance the
functionality of the compiler.

* [Implementation Advice], page 138, provides information on generally desirable be-
havior which are not requirements that all compilers must follow since it cannot be
provided on all systems, or which may be undesirable on some systems.

* [Implementation Defined Characteristics|, page 158, provides a guide to minimizing

implementation dependent features.

[Intrinsic Subprograms|, page 175, describes the intrinsic subprograms implemented by

GNAT, and how they can be imported into user application programs.

* [Representation Clauses and Pragmas|, page 178, describes in detail the way that
GNAT represents data, and in particular the exact set of representation clauses and
pragmas that is accepted.

* [Standard Library Routines|, page 209, provides a listing of packages and a brief de-
scription of the functionality that is provided by Ada’s extensive set of standard library
routines as implemented by GNAT.

* [The Implementation of Standard 1/0], page 220, details how the GNAT implementa-
tion of the input-output facilities.

Chapter 1: About This Guide 3

*

[The GNAT Library|, page 238, is a catalog of packages that complement the Ada
predefined library.

[Interfacing to Other Languages|, page 257, describes how programs written in Ada
using GNAT can be interfaced to other programming languages.

[Specialized Needs Annexes|, page 260, describes the GNAT implementation of all of
the specialized needs annexes.

[Implementation of Specific Ada Features|, page 261, discusses issues related to GNAT’s
implementation of machine code insertions, tasking, and several other features.

[Implementation of Ada 2012 Features|, page 270, describes the status of the GNAT
implementation of the Ada 2012 language standard.

[Obsolescent Features|, page 287 documents implementation dependent features, in-
cluding pragmas and attributes, which are considered obsolescent, since there are other
preferred ways of achieving the same results. These obsolescent forms are retained for
backwards compatibility.

[Compatibility and Porting Guide], page 288 presents some guidelines for developing
portable Ada code, describes the compatibility issues that may arise between GNAT
and other Ada compilation systems (including those for Ada 83), and shows how GNAT
can expedite porting applications developed in other Ada environments.

[GNU Free Documentation License], page 297 contains the license for this document.

This reference manual assumes a basic familiarity with the Ada 95 language, as described
in the International Standard ANSI/ISO/IEC-8652:1995. 1t does not require knowledge of
the new features introduced by Ada 2005 or Ada 2012. All three reference manuals are
included in the GNAT documentation package.

1.2 Conventions

Following are examples of the typographical and graphic conventions used in this guide:

*

*

*

Functions, utility program names, standard names, and classes.
Option flags
File names
Variables
Emphasis
[optional information or parameters|
Examples are described by text
and then shown this way.

Commands that are entered by the user are shown as preceded by a prompt string
comprising the $ character followed by a space.

1.3 Related Information

See the following documents for further information on GNAT:

*

GNAT User’s Guide for Native Platforms, which provides information on how to use
the GNAT development environment.

Chapter 1: About This Guide 4

* Ada 95 Reference Manual, the Ada 95 programming language standard.

* Ada 95 Annotated Reference Manual, which is an annotated version of the Ada 95
standard. The annotations describe detailed aspects of the design decision, and in
particular contain useful sections on Ada 83 compatibility.

* Ada 2005 Reference Manual, the Ada 2005 programming language standard.

* Ada 2005 Annotated Reference Manual, which is an annotated version of the Ada 2005
standard. The annotations describe detailed aspects of the design decision.

* Ada 2012 Reference Manual, the Ada 2012 programming language standard.

* DEC Ada, Technical Overview and Comparison on DIGITAL Platforms, which contains
specific information on compatibility between GNAT and DEC Ada 83 systems.

* DEC Ada, Language Reference Manual, part number AA-PYZAB-TK, which describes
in detail the pragmas and attributes provided by the DEC Ada 83 compiler system.

Chapter 2: Implementation Defined Pragmas 5

2 Implementation Defined Pragmas

Ada defines a set of pragmas that can be used to supply additional information to the
compiler. These language defined pragmas are implemented in GNAT and work as described
in the Ada Reference Manual.

In addition, Ada allows implementations to define additional pragmas whose meaning is
defined by the implementation. GNAT provides a number of these implementation-defined
pragmas, which can be used to extend and enhance the functionality of the compiler. This
section of the GNAT Reference Manual describes these additional pragmas.

Note that any program using these pragmas might not be portable to other compilers (al-
though GNAT implements this set of pragmas on all platforms). Therefore if portability
to other compilers is an important consideration, the use of these pragmas should be mini-
mized.

2.1 Pragma Abort_Defer
Syntax:

pragma Abort_Defer;

This pragma must appear at the start of the statement sequence of a handled sequence of
statements (right after the begin). It has the effect of deferring aborts for the sequence of
statements (but not for the declarations or handlers, if any, associated with this statement
sequence).

2.2 Pragma Abstract_State
For the description of this pragma, see SPARK 2014 Reference Manual, section 7.1.4.

2.3 Pragma Ada_83
Syntax:

pragma Ada_83;

A configuration pragma that establishes Ada 83 mode for the unit to which it applies,
regardless of the mode set by the command line switches. In Ada 83 mode, GNAT attempts
to be as compatible with the syntax and semantics of Ada 83, as defined in the original
Ada 83 Reference Manual as possible. In particular, the keywords added by Ada 95 and
Ada 2005 are not recognized, optional package bodies are allowed, and generics may name
types with unknown discriminants without using the (<>) notation. In addition, some but
not all of the additional restrictions of Ada 83 are enforced.

Ada 83 mode is intended for two purposes. Firstly, it allows existing Ada 83 code to be
compiled and adapted to GNAT with less effort. Secondly, it aids in keeping code backwards
compatible with Ada 83. However, there is no guarantee that code that is processed correctly
by GNAT in Ada 83 mode will in fact compile and execute with an Ada 83 compiler, since
GNAT does not enforce all the additional checks required by Ada 83.

Chapter 2: Implementation Defined Pragmas 6

2.4 Pragma Ada_95

Syntax:

pragma Ada_95;
A configuration pragma that establishes Ada 95 mode for the unit to which it applies,
regardless of the mode set by the command line switches. This mode is set automatically
for the Ada and System packages and their children, so you need not specify it in these
contexts. This pragma is useful when writing a reusable component that itself uses Ada 95
features, but which is intended to be usable from either Ada 83 or Ada 95 programs.

2.5 Pragma Ada_05

Syntax:

pragma Ada_05;

pragma Ada_05 (local_NAME);
A configuration pragma that establishes Ada 2005 mode for the unit to which it applies,
regardless of the mode set by the command line switches. This pragma is useful when
writing a reusable component that itself uses Ada 2005 features, but which is intended to
be usable from either Ada 83 or Ada 95 programs.

The one argument form (which is not a configuration pragma) is used for managing the
transition from Ada 95 to Ada 2005 in the run-time library. If an entity is marked as
Ada_2005 only, then referencing the entity in Ada_83 or Ada_95 mode will generate a
warning. In addition, in Ada_83 or Ada_95 mode, a preference rule is established which
does not choose such an entity unless it is unambiguously specified. This avoids extra
subprograms marked this way from generating ambiguities in otherwise legal pre-Ada_2005
programs. The one argument form is intended for exclusive use in the GNAT run-time
library.

2.6 Pragma Ada_2005

Syntax:
pragma Ada_2005;

This configuration pragma is a synonym for pragma Ada_05 and has the same syntax and
effect.

2.7 Pragma Ada_12

Syntax:

pragma Ada_12;

pragma Ada_12 (local_NAME);
A configuration pragma that establishes Ada 2012 mode for the unit to which it applies,
regardless of the mode set by the command line switches. This mode is set automatically
for the Ada and System packages and their children, so you need not specify it in these
contexts. This pragma is useful when writing a reusable component that itself uses Ada 2012
features, but which is intended to be usable from Ada 83, Ada 95, or Ada 2005 programs.

The one argument form, which is not a configuration pragma, is used for managing the
transition from Ada 2005 to Ada 2012 in the run-time library. If an entity is marked

Chapter 2: Implementation Defined Pragmas 7

as Ada_201 only, then referencing the entity in any pre-Ada_2012 mode will generate a
warning. In addition, in any pre-Ada_2012 mode, a preference rule is established which
does not choose such an entity unless it is unambiguously specified. This avoids extra
subprograms marked this way from generating ambiguities in otherwise legal pre-Ada_2012
programs. The one argument form is intended for exclusive use in the GNAT run-time
library.

2.8 Pragma Ada_2012

Syntax:
pragma Ada_2012;

This configuration pragma is a synonym for pragma Ada_12 and has the same syntax and
effect.

2.9 Pragma Allow_Integer_Address

Syntax:
pragma Allow_Integer_Address;

In almost all versions of GNAT, System.Address is a private type in accordance with the
implementation advice in the RM. This means that integer values, in particular integer lit-
erals, are not allowed as address values. If the configuration pragma Allow_Integer_Address
is given, then integer expressions may be used anywhere a value of type System.Address
is required. The effect is to introduce an implicit unchecked conversion from the integer
value to type System.Address. The reverse case of using an address where an integer type
is required is handled analogously. The following example compiles without errors:

pragma Allow_Integer_Address;
with System; use System;
package AddrAsInt is
X : Integer;
Y : Integer;
for X’Address use 16#1240#;
for Y use at 16#3230#;
: Address := 16#4000#;
: constant Address := 4000;
: constant Address := Address (X + Y);
: Integer := y’Address;
: constant Integer := Integer (Y’Address);
type R is new integer;
RR : R := 1000;
Z : Integer;
for Z’Address use RR;
end AddrAsInt;

s < BB

Note that pragma Allow_Integer_Address is ignored if System.Address is not a private type.
In implementations of GNAT where System.Address is a visible integer type, this pragma
serves no purpose but is ignored rather than rejected to allow common sets of sources to be
used in the two situations.

Chapter 2: Implementation Defined Pragmas 8

2.10 Pragma Annotate

Syntax:
pragma Annotate (IDENTIFIER [, IDENTIFIER {, ARG}] [, entity => local_NAME]);

ARG ::= NAME | EXPRESSION

This pragma is used to annotate programs. identifier identifies the type of annotation.
GNAT verifies that it is an identifier, but does not otherwise analyze it. The second optional
identifier is also left unanalyzed, and by convention is used to control the action of the
tool to which the annotation is addressed. The remaining arg arguments can be either
string literals or more generally expressions. String literals are assumed to be either of
type Standard.String or else Wide_String or Wide_Wide_String depending on the character
literals they contain. All other kinds of arguments are analyzed as expressions, and must
be unambiguous. The last argument if present must have the identifier Entity and GNAT
verifies that a local name is given.

The analyzed pragma is retained in the tree, but not otherwise processed by any part of
the GNAT compiler, except to generate corresponding note lines in the generated ALI file.
For the format of these note lines, see the compiler source file lib-writ.ads. This pragma is
intended for use by external tools, including ASIS. The use of pragma Annotate does not
affect the compilation process in any way. This pragma may be used as a configuration
pragma.

2.11 Pragma Assert

Syntax:

pragma Assert (
boolean_EXPRESSION
[, string_ EXPRESSION]);

The effect of this pragma depends on whether the corresponding command line switch is
set to activate assertions. The pragma expands into code equivalent to the following:

if assertions-enabled then
if not boolean_EXPRESSION then
System.Assertions.Raise_Assert_Failure
(string_EXPRESSION) ;
end if;
end if;
The string argument, if given, is the message that will be associated with the exception
occurrence if the exception is raised. If no second argument is given, the default message is
file:nnn, where file is the name of the source file containing the assert, and nnn is the line
number of the assert. A pragma is not a statement, so if a statement sequence contains
nothing but a pragma assert, then a null statement is required in addition, as in:

if J > 3 then
pragma Assert (K > 3, "Bad value for K");
null;

end if;

Chapter 2: Implementation Defined Pragmas 9

Note that, as with the if statement to which it is equivalent, the type of the expression is
either Standard.Boolean, or any type derived from this standard type.

Assert checks can be either checked or ignored. By default they are ignored. They will
be checked if either the command line switch -gnata is used, or if an Assertion_Policy or
Check_Policy pragma is used to enable Assert_Checks.

If assertions are ignored, then there is no run-time effect (and in particular, any side effects
from the expression will not occur at run time). (The expression is still analyzed at compile
time, and may cause types to be frozen if they are mentioned here for the first time).

If assertions are checked, then the given expression is tested, and if it is False then Sys-
tem. Assertions. Raise_Assert_Failure is called which results in the raising of Assert_Failure
with the given message.

You should generally avoid side effects in the expression arguments of this pragma, because
these side effects will turn on and off with the setting of the assertions mode, resulting in
assertions that have an effect on the program. However, the expressions are analyzed for
semantic correctness whether or not assertions are enabled, so turning assertions on and off
cannot affect the legality of a program.

Note that the implementation defined policy DISABLE, given in a pragma Assertion_Policy,
can be used to suppress this semantic analysis.

Note: this is a standard language-defined pragma in versions of Ada from 2005 on.
In GNAT, it is implemented in all versions of Ada, and the DISABLE policy is an
implementation-defined addition.

2.12 Pragma Assert_And_Cut

Syntax:

pragma Assert_And_Cut (
boolean_EXPRESSION
[, string_ EXPRESSION]);

The effect of this pragma is identical to that of pragma Assert, except that in an Asser-
tion_Policy pragma, the identifier Assert_And_Cut is used to control whether it is ignored
or checked (or disabled).

The intention is that this be used within a subprogram when the given test expresion sums
up all the work done so far in the subprogram, so that the rest of the subprogram can be
verified (informally or formally) using only the entry preconditions, and the expression in
this pragma. This allows dividing up a subprogram into sections for the purposes of testing
or formal verification. The pragma also serves as useful documentation.

2.13 Pragma Assertion_Policy

Syntax:
pragma Assertion_Policy (CHECK | DISABLE | IGNORE);

pragma Assertion_Policy (
ASSERTION_KIND => POLICY_IDENTIFIER
{, ASSERTION_KIND => POLICY_IDENTIFIER});

Chapter 2: Implementation Defined Pragmas 10

ASSERTION_KIND ::= RM_ASSERTION_KIND | ID_ASSERTION_KIND

RM_ASSERTION_KIND ::= Assert
Static_Predicate
Dynamic_Predicate
Pre
Pre’Class
Post
Post’Class
Type_Invariant
Type_Invariant’Class

ID_ASSERTION_KIND ::= Assertions
Assert_And_Cut
Assume
Contract_Cases
Debug
Invariant
Invariant’Class
Loop_Invariant
Loop_Variant
Postcondition
Precondition
Predicate
Refined_Post
Statement_Assertions

POLICY_IDENTIFIER ::= Check | Disable | Ignore

This is a standard Ada 2012 pragma that is available as an implementation-defined pragma
in earlier versions of Ada. The assertion kinds RM_ASSERTION_KIND are those defined in
the Ada standard. The assertion kinds ID_ASSERTION_KIND are implementation defined
additions recognized by the GNAT compiler.

The pragma applies in both cases to pragmas and aspects with matching names, e.g. Pre
applies to the Pre aspect, and Precondition applies to both the Precondition pragma and
the aspect Precondition. Note that the identifiers for pragmas Pre_Class and Post_Class are
Pre’Class and Post’Class (not Pre_Class and Post_Class), since these pragmas are intended
to be identical to the corresponding aspects).

If the policy is CHECK, then assertions are enabled, i.e. the corresponding pragma or aspect
is activated. If the policy is IGNORE, then assertions are ignored, i.e. the corresponding
pragma or aspect is deactivated. This pragma overrides the effect of the -gnata switch on
the command line.

The implementation defined policy DISABLE is like IGNORE except that it completely
disables semantic checking of the corresponding pragma or aspect. This is useful when the
pragma or aspect argument references subprograms in a with’ed package which is replaced
by a dummy package for the final build.

Chapter 2: Implementation Defined Pragmas 11

The implementation defined assertion kind Assertions applies to all assertion kinds. The
form with no assertion kind given implies this choice, so it applies to all assertion kinds
(RM defined, and implementation defined).

The implementation defined assertion kind Statement_Assertions applies to Assert, As-
sert_And_Cut, Assume, Loop_Invariant, and Loop_ Variant.

2.14 Pragma Assume
Syntax:

pragma Assume (
boolean_EXPRESSION
[, string_ EXPRESSION]);

The effect of this pragma is identical to that of pragma Assert, except that in an Asser-
tion_Policy pragma, the identifier Assume is used to control whether it is ignored or checked
(or disabled).

The intention is that this be used for assumptions about the external environment. So
you cannot expect to verify formally or informally that the condition is met, this must be
established by examining things outside the program itself. For example, we may have code
that depends on the size of Long_Long_Integer being at least 64. So we could write:

pragma Assume (Long_Long_Integer’Size >= 64);

This assumption cannot be proved from the program itself, but it acts as a useful run-time
check that the assumption is met, and documents the need to ensure that it is met by
reference to information outside the program.

2.15 Pragma Assume_No_Invalid_Values

Syntax:
pragma Assume_No_Invalid_Values (On | 0ff);

This is a configuration pragma that controls the assumptions made by the compiler about
the occurrence of invalid representations (invalid values) in the code.

The default behavior (corresponding to an Off argument for this pragma), is to assume that
values may in general be invalid unless the compiler can prove they are valid. Consider the
following example:

V1 : Integer range 1 .. 10;
V2 : Integer range 11 .. 20;

for J in V2 .. V1 loop

end loop;
if V1 and V2 have valid values, then the loop is known at compile time not to execute since
the lower bound must be greater than the upper bound. However in default mode, no such
assumption is made, and the loop may execute. If Assume_No_Invalid_Values (On) is given,

the compiler will assume that any occurrence of a variable other than in an explicit 'Valid
test always has a valid value, and the loop above will be optimized away.

Chapter 2: Implementation Defined Pragmas 12

The use of Assume_No_Invalid_Values (On) is appropriate if you know your code is free of
uninitialized variables and other possible sources of invalid representations, and may result
in more efficient code. A program that accesses an invalid representation with this pragma
in effect is erroneous, so no guarantees can be made about its behavior.

It is peculiar though permissible to use this pragma in conjunction with validity checking
(-gnatVa). In such cases, accessing invalid values will generally give an exception, though
formally the program is erroneous so there are no guarantees that this will always be the
case, and it is recommended that these two options not be used together.

2.16 Pragma Async_Readers
For the description of this pragma, see SPARK 2014 Reference Manual, section 7.1.2.

2.17 Pragma Async_Writers
For the description of this pragma, see SPARK 2014 Reference Manual, section 7.1.2.

2.18 Pragma Attribute_Definition

Syntax:
pragma Attribute_Definition
([Attribute =>] ATTRIBUTE_DESIGNATOR,
[Entity =>] LOCAL_NAME,
[Expression =>] EXPRESSION | NAME);
If Attribute is a known attribute name, this pragma is equivalent to the attribute definition
clause:
for Entity’Attribute use Expression;
If Attribute is not a recognized attribute name, the pragma is ignored, and a warning is
emitted. This allows source code to be written that takes advantage of some new attribute,
while remaining compilable with earlier compilers.

2.19 Pragma C_Pass_By_Copy

Syntax:
pragma C_Pass_By_Copy
([Max_Size =>] static_integer_ EXPRESSION);

Normally the default mechanism for passing C convention records to C convention subpro-
grams is to pass them by reference, as suggested by RM B.3(69). Use the configuration
pragma C_Pass_By_Copy to change this default, by requiring that record formal parameters
be passed by copy if all of the following conditions are met:

* The size of the record type does not exceed the value specified for Max_Size.

* The record type has Convention C.

* The formal parameter has this record type, and the subprogram has a foreign (non-Ada)
convention.

If these conditions are met the argument is passed by copy; i.e., in a manner consistent with
what C expects if the corresponding formal in the C prototype is a struct (rather than a
pointer to a struct).

Chapter 2: Implementation Defined Pragmas 13

You can also pass records by copy by specifying the convention C_Pass_By_Copy for the
record type, or by using the extended Import and Export pragmas, which allow specification
of passing mechanisms on a parameter by parameter basis.

2.20 Pragma Check

Syntax:

pragma Check (
[Name =>] CHECK_KIND,
[Check =>] Boolean_EXPRESSION
[, [Message =>] string_ EXPRESSION]);

CHECK_KIND ::= IDENTIFIER |
Pre’Class |
Post’Class |
Type_Invariant’Class |
Invariant’Class

This pragma is similar to the predefined pragma Assert except that an extra identifier
argument is present. In conjunction with pragma Check_Policy, this can be used to define
groups of assertions that can be independently controlled. The identifier Assertion is special,
it refers to the normal set of pragma Assert statements.

Checks introduced by this pragma are normally deactivated by default. They can be acti-
vated either by the command line option -gnata, which turns on all checks, or individually
controlled using pragma Check_Policy.

The identifiers Assertions and Statement_Assertions are not permitted as check kinds,
since this would cause confusion with the use of these identifiers in Assertion_Policy and
Check_Policy pragmas, where they are used to refer to sets of assertions.

2.21 Pragma Check_Float_Overflow

Syntax:
pragma Check_Float_Overflow;

In Ada, the predefined floating-point types (Short_Float, Float, Long_Float,
Long_Long_Float) are defined to be unconstrained. This means that even though each has
a well-defined base range, an operation that delivers a result outside this base range is not
required to raise an exception. This implementation permission accommodates the notion
of infinities in IEEE floating-point, and corresponds to the efficient execution mode on
most machines. GNAT will not raise overflow exceptions on these machines; instead it will
generate infinities and NaN’s as defined in the IEEE standard.

Generating infinities, although efficient, is not always desirable. Often the preferable ap-
proach is to check for overflow, even at the (perhaps considerable) expense of run-time
performance. This can be accomplished by defining your own constrained floating-point
subtypes — i.e., by supplying explicit range constraints — and indeed such a subtype can
have the same base range as its base type. For example:

subtype My_Float is Float range Float’Range;

Chapter 2: Implementation Defined Pragmas 14

Here My_Float has the same range as Float but is constrained, so operations on My_Float
values will be checked for overflow against this range.

This style will achieve the desired goal, but it is often more convenient to be able to
simply use the standard predefined floating-point types as long as overflow checking could
be guaranteed. The Check_Float_Overflow configuration pragma achieves this effect. If
a unit is compiled subject to this configuration pragma, then all operations on predefined
floating-point types including operations on base types of these floating-point types will be
treated as though those types were constrained, and overflow checks will be generated. The
Constraint_Error exception is raised if the result is out of range.

This mode can also be set by use of the compiler switch -gnateF.

2.22 Pragma Check_Name

Syntax:
pragma Check_Name (check_name_IDENTIFIER) ;

This is a configuration pragma that defines a new implementation defined check name
(unless IDENTIFIER matches one of the predefined check names, in which case the pragma
has no effect). Check names are global to a partition, so if two or more configuration
pragmas are present in a partition mentioning the same name, only one new check name is
introduced.

An implementation defined check name introduced with this pragma may be used in
only three contexts: pragma Suppress, pragma Unsuppress, and as the prefix of a
Check_Name’Enabled attribute reference. For any of these three cases, the check name
must be visible. A check name is visible if it is in the configuration pragmas applying to
the current unit, or if it appears at the start of any unit that is part of the dependency set
of the current unit (e.g., units that are mentioned in with clauses).

Check names introduced by this pragma are subject to control by compiler switches (in
particular -gnatp) in the usual manner.

2.23 Pragma Check_Policy

Syntax:

pragma Check_Policy
([Name =>] CHECK_KIND,
[Policy =>] POLICY_IDENTIFIER);

pragma Check_Policy (
CHECK_KIND => POLICY_IDENTIFIER
{, CHECK_KIND => POLICY_IDENTIFIER});

ASSERTION_KIND ::= RM_ASSERTION_KIND | ID_ASSERTION_KIND
CHECK_KIND ::= IDENTIFIER |
Pre’Class |
Post’Class |
|

Type_Invariant’Class

Chapter 2: Implementation Defined Pragmas 15

Invariant’Class

The identifiers Name and Policy are not allowed as CHECK_KIND values. This
avoids confusion between the two possible syntax forms for this pragma.

POLICY_IDENTIFIER ::= ON | OFF | CHECK | DISABLE | IGNORE

This pragma is used to set the checking policy for assertions (specified by aspects or prag-
mas), the Debug pragma, or additional checks to be checked using the Check pragma. It
may appear either as a configuration pragma, or within a declarative part of package. In
the latter case, it applies from the point where it appears to the end of the declarative
region (like pragma Suppress).

The Check_Policy pragma is similar to the predefined Assertion_Policy pragma, and if the
check kind corresponds to one of the assertion kinds that are allowed by Assertion_Policy,
then the effect is identical.

If the first argument is Debug, then the policy applies to Debug pragmas, disabling their
effect if the policy is OFF, DISABLE, or IGNORE, and allowing them to execute with
normal semantics if the policy is ON or CHECK. In addition if the policy is DISABLE, then
the procedure call in Debug pragmas will be totally ignored and not analyzed semantically.

Finally the first argument may be some other identifier than the above possibilities, in which
case it controls a set of named assertions that can be checked using pragma Check. For
example, if the pragma:

pragma Check_Policy (Critical_Error, OFF);
is given, then subsequent Check pragmas whose first argument is also Critical_Error will
be disabled.

The check policy is OFF to turn off corresponding checks, and ON to turn on corresponding
checks. The default for a set of checks for which no Check_Policy is given is OFF unless
the compiler switch -gnata is given, which turns on all checks by default.

The check policy settings CHECK and IGNORE are recognized as synonyms for ON and
OFF. These synonyms are provided for compatibility with the standard Assertion_Policy
pragma. The check policy setting DISABLE causes the second argument of a corresponding
Check pragma to be completely ignored and not analyzed.

2.24 Pragma CIL_Constructor
Syntax:
pragma CIL_Constructor ([Entity =>] function_LOCAL_NAME) ;

This pragma is used to assert that the specified Ada function should be mapped to the
.NET constructor for some Ada tagged record type.

See section 4.1 of the GNAT User’s Guide: Supplement for the .NET Platform. for related
information.

2.25 Pragma Comment
Syntax:

Chapter 2: Implementation Defined Pragmas 16

pragma Comment (static_string EXPRESSION) ;

This is almost identical in effect to pragma Ident. It allows the placement of a comment
into the object file and hence into the executable file if the operating system permits such
usage. The difference is that Comment, unlike Ident, has no limitations on placement of the
pragma (it can be placed anywhere in the main source unit), and if more than one pragma
is used, all comments are retained.

2.26 Pragma Common_Object

Syntax:

pragma Common_Object (
[Internal =>] LOCAL_NAME
[, [External =>] EXTERNAL_SYMBOL]
[, [Size =>] EXTERNAL_SYMBOL]);

EXTERNAL_SYMBOL ::=
IDENTIFIER
| static_string_ EXPRESSION

This pragma enables the shared use of variables stored in overlaid linker areas corresponding
to the use of COMMON in Fortran. The single object LOCAL_NAME is assigned to the
area designated by the External argument. You may define a record to correspond to a
series of fields. The Size argument is syntax checked in GNAT, but otherwise ignored.

Common_Object is not supported on all platforms. If no support is available, then the code
generator will issue a message indicating that the necessary attribute for implementation
of this pragma is not available.

2.27 Pragma Compile_Time_Error
Syntax:

pragma Compile_Time_Error
(boolean_ EXPRESSION, static_string EXPRESSION);

This pragma can be used to generate additional compile time error messages. It is partic-
ularly useful in generics, where errors can be issued for specific problematic instantiations.
The first parameter is a boolean expression. The pragma is effective only if the value of this
expression is known at compile time, and has the value True. The set of expressions whose
values are known at compile time includes all static boolean expressions, and also other
values which the compiler can determine at compile time (e.g., the size of a record type set
by an explicit size representation clause, or the value of a variable which was initialized to
a constant and is known not to have been modified). If these conditions are met, an error
message is generated using the value given as the second argument. This string value may
contain embedded ASCII.LF characters to break the message into multiple lines.

2.28 Pragma Compile_Time_Warning
Syntax:

pragma Compile_Time_Warning
(boolean_EXPRESSION, static_string_EXPRESSION);

Chapter 2: Implementation Defined Pragmas 17

Same as pragma Compile_Time_Error, except a warning is issued instead of an error mes-
sage. Note that if this pragma is used in a package that is with’ed by a client, the client
will get the warning even though it is issued by a with’ed package (normally warnings in
with’ed units are suppressed, but this is a special exception to that rule).

One typical use is within a generic where compile time known characteristics of formal
parameters are tested, and warnings given appropriately. Another use with a first param-
eter of True is to warn a client about use of a package, for example that it is not fully
implemented.

2.29 Pragma Compiler_Unit

Syntax:
pragma Compiler_Unit;
This pragma is obsolete. It is equivalent to Compiler_Unit_Warning. It is retained so

that old versions of the GNAT run-time that use this pragma can be compiled with newer
versions of the compiler.

2.30 Pragma Compiler_Unit_Warning

Syntax:

pragma Compiler_Unit_Warning;
This pragma is intended only for internal use in the GNAT run-time library. It indicates
that the unit is used as part of the compiler build. The effect is to generate warnings for
the use of constructs (for example, conditional expressions) that would cause trouble when
bootstrapping using an older version of GNAT. For the exact list of restrictions, see the
compiler sources and references to Check_Compiler_Unit.

2.31 Pragma Complete_Representation
Syntax:

pragma Complete_Representation;

This pragma must appear immediately within a record representation clause. Typical place-
ments are before the first component clause or after the last component clause. The effect is
to give an error message if any component is missing a component clause. This pragma may
be used to ensure that a record representation clause is complete, and that this invariant is
maintained if fields are added to the record in the future.

2.32 Pragma Complex_Representation

Syntax:

pragma Complex_Representation
([Entity =>] LOCAL_NAME);
The Entity argument must be the name of a record type which has two fields of the same
floating-point type. The effect of this pragma is to force gcc to use the special internal
complex representation form for this record, which may be more efficient. Note that this
may result in the code for this type not conforming to standard ABI (application binary
interface) requirements for the handling of record types. For example, in some environments,

Chapter 2: Implementation Defined Pragmas 18

there is a requirement for passing records by pointer, and the use of this pragma may result
in passing this type in floating-point registers.

2.33 Pragma Component_Alignment
Syntax:

pragma Component_Alignment (
[Form =>] ALIGNMENT_CHOICE
[, [Name =>] type_LOCAL_NAME]);

ALIGNMENT_CHOICE ::=
Component_Size
| Component_Size_4
| Storage_Unit
| Default
Specifies the alignment of components in array or record types. The meaning of the Form
argument is as follows:

Component_Size
Aligns scalar components and subcomponents of the array or record type on
boundaries appropriate to their inherent size (naturally aligned). For example,
1-byte components are aligned on byte boundaries, 2-byte integer components
are aligned on 2-byte boundaries, 4-byte integer components are aligned on 4-
byte boundaries and so on. These alignment rules correspond to the normal
rules for C compilers on all machines except the VAX.

Component_Size_}
Naturally aligns components with a size of four or fewer bytes. Components
that are larger than 4 bytes are placed on the next 4-byte boundary.

Storage_ Unit
Specifies that array or record components are byte aligned, i.e., aligned on
boundaries determined by the value of the constant System.Storage_Unit.

Default

Specifies that array or record components are aligned on default boundaries,
appropriate to the underlying hardware or operating system or both. The
Default choice is the same as Component_Size (natural alignment).

If the Name parameter is present, type. LOCAL_NAME must refer to a local record or array
type, and the specified alignment choice applies to the specified type. The use of Compo-
nent_Alignment together with a pragma Pack causes the Component_Alignment pragma to
be ignored. The use of Component_Alignment together with a record representation clause
is only effective for fields not specified by the representation clause.

If the Name parameter is absent, the pragma can be used as either a configuration pragma,
in which case it applies to one or more units in accordance with the normal rules for
configuration pragmas, or it can be used within a declarative part, in which case it applies
to types that are declared within this declarative part, or within any nested scope within
this declarative part. In either case it specifies the alignment to be applied to any record
or array type which has otherwise standard representation.

Chapter 2: Implementation Defined Pragmas 19

If the alignment for a record or array type is not specified (using pragma Pack, pragma
Component_Alignment, or a record rep clause), the GNAT uses the default alignment as
described previously.

2.34 Pragma Contract_Cases
Syntax:

pragma Contract_Cases (
Condition => Consequence
{,Condition => Consequence});

The Contract_Cases pragma allows defining fine-grain specifications that can complement
or replace the contract given by a precondition and a postcondition. Additionally, the
Contract_Cases pragma can be used by testing and formal verification tools. The compiler
checks its validity and, depending on the assertion policy at the point of declaration of the
pragma, it may insert a check in the executable. For code generation, the contract cases

pragma Contract_Cases (
Condl => Predi,
Cond2 => Pred2);

are equivalent to

Cl : constant Boolean := Condl; -- evaluated at subprogram entry
C2 : constant Boolean := Cond2; -- evaluated at subprogram entry
pragma Precondition ((Cl and not C2) or (C2 and not C1));

pragma Postcondition (if C1 then Predl);

pragma Postcondition (if C2 then Pred2);

The precondition ensures that one and only one of the conditions is satisfied on entry to
the subprogram. The postcondition ensures that for the condition that was True on entry,
the corrresponding consequence is True on exit. Other consequence expressions are not
evaluated.

A precondition P and postcondition) can also be expressed as contract cases:
pragma Contract_Cases (P => Q);

The placement and visibility rules for Contract_Cases pragmas are identical to those de-
scribed for preconditions and postconditions.

The compiler checks that boolean expressions given in conditions and consequences are valid,
where the rules for conditions are the same as the rule for an expression in Precondition
and the rules for consequences are the same as the rule for an expression in Postcondition.
In particular, attributes ’Old and ’Result can only be used within consequence expressions.
The condition for the last contract case may be others, to denote any case not captured by
the previous cases. The following is an example of use within a package spec:

package Math_Functions is

function Sqrt (Arg : Float) return Float;

pragma Contract_Cases ((Arg in O .. 99) => Sqrt’Result < 10,
Arg >= 100 => Sqrt’Result >= 10,
others => Sqrt’Result = 0);

Chapter 2: Implementation Defined Pragmas 20

end Math_Functions;

The meaning of contract cases is that only one case should apply at each call, as determined
by the corresponding condition evaluating to True, and that the consequence for this case
should hold when the subprogram returns.

2.35 Pragma Convention_Ildentifier

Syntax:

pragma Convention_Identifier (
[Name =>] IDENTIFIER,
[Convention =>] convention_IDENTIFIER);

This pragma provides a mechanism for supplying synonyms for existing convention identi-
fiers. The Name identifier can subsequently be used as a synonym for the given convention
in other pragmas (including for example pragma Import or another Convention_Identifier
pragma). As an example of the use of this, suppose you had legacy code which used For-
tran77 as the identifier for Fortran. Then the pragma:

pragma Convention_Identifier (Fortran77, Fortran);

would allow the use of the convention identifier Fortran77 in subsequent code, avoiding the
need to modify the sources. As another example, you could use this to parameterize con-
vention requirements according to systems. Suppose you needed to use Stdcall on windows
systems, and C on some other system, then you could define a convention identifier Library
and use a single Convention_Identifier pragma to specify which convention would be used
system-wide.

2.36 Pragma CPP_Class

Syntax:

pragma CPP_Class ([Entity =>] LOCAL_NAME) ;
The argument denotes an entity in the current declarative region that is declared as a record
type. It indicates that the type corresponds to an externally declared C++ class type, and

is to be laid out the same way that C++ would lay out the type. If the C++ class has virtual
primitives then the record must be declared as a tagged record type.

Types for which CPP_Class is specified do not have assignment or equality operators defined
(such operations can be imported or declared as subprograms as required). Initialization
is allowed only by constructor functions (see pragma CPP_Constructor). Such types are
implicitly limited if not explicitly declared as limited or derived from a limited type, and
an error is issued in that case.

See [Interfacing to C++], page 259 for related information.

Note: Pragma CPP_Class is currently obsolete. It is supported for backward compatibility
but its functionality is available using pragma Import with Convention = CPP.

2.37 Pragma CPP_Constructor

Syntax:

pragma CPP_Constructor ([Entity =>] LOCAL_NAME
[, [External_Name =>] static_string EXPRESSION]

Chapter 2: Implementation Defined Pragmas 21

[, [Link_Name =>] static_string EXPRESSION]);

This pragma identifies an imported function (imported in the usual way with pragma Im-
port) as corresponding to a C++ constructor. If External Name and Link_Name are not
specified then the Entity argument is a name that must have been previously mentioned
in a pragma Import with Convention = CPP. Such name must be of one of the following
forms:

* function Fname return T°

* function Fname return T’Class

* function Fname (...) return T*

* function Fname (...) return T’Class

where T is a limited record type imported from C++ with pragma Import and Convention
= CPP.

The first two forms import the default constructor, used when an object of type T is created
on the Ada side with no explicit constructor. The latter two forms cover all the non-default
constructors of the type. See the GNAT User’s Guide for details.

If no constructors are imported, it is impossible to create any objects on the Ada side and
the type is implicitly declared abstract.

Pragma CPP_Constructor is intended primarily for automatic generation using an auto-
matic binding generator tool (such as the -fdump-ada-spec GCC switch). See [Interfacing
to C++|, page 259 for more related information.

Note: The use of functions returning class-wide types for constructors is currently obsolete.
They are supported for backward compatibility. The use of functions returning the type T
leave the Ada sources more clear because the imported C++ constructors always return an
object of type T; that is, they never return an object whose type is a descendant of type T.

2.38 Pragma CPP_Virtual

This pragma is now obsolete and, other than generating a warning if warnings on obsolescent
features are enabled, is completely ignored. It is retained for compatibility purposes. It
used to be required to ensure compoatibility with C++, but is no longer required for that
purpose because GNAT generates the same object layout as the G++ compiler by default.

See [Interfacing to C++], page 259 for related information.

2.39 Pragma CPP_Vtable

This pragma is now obsolete and, other than generating a warning if warnings on obsolescent
features are enabled, is completely ignored. It used to be required to ensure compatibility
with C++, but is no longer required for that purpose because GNAT generates the same
object layout as the G++ compiler by default.

See [Interfacing to C++], page 259 for related information.

2.40 Pragma CPU
Syntax:

Chapter 2: Implementation Defined Pragmas 22

pragma CPU (EXPRESSION) ;

This pragma is standard in Ada 2012, but is available in all earlier versions of Ada as an
implementation-defined pragma. See Ada 2012 Reference Manual for details.

2.41 Pragma Debug

Syntax:
pragma Debug ([CONDITION,]PROCEDURE_CALL_WITHOUT_SEMICOLON);

PROCEDURE_CALL_WITHOUT_SEMICOLON ::=
PROCEDURE_NAME
| PROCEDURE_PREFIX ACTUAL_PARAMETER_PART

The procedure call argument has the syntactic form of an expression, meeting the syntactic
requirements for pragmas.

If debug pragmas are not enabled or if the condition is present and evaluates to False,
this pragma has no effect. If debug pragmas are enabled, the semantics of the pragma is
exactly equivalent to the procedure call statement corresponding to the argument with a
terminating semicolon. Pragmas are permitted in sequences of declarations, so you can
use pragma Debug to intersperse calls to debug procedures in the middle of declarations.
Debug pragmas can be enabled either by use of the command line switch -gnata or by use
of the pragma Check_Policy with a first argument of Debug.

2.42 Pragma Debug_Policy

Syntax:
pragma Debug_Policy (CHECK | DISABLE | IGNORE | ON | OFF);

This pragma is equivalent to a corresponding Check_Policy pragma with a first argument
of Debug. It is retained for historical compatibility reasons.

2.43 Pragma Default_Scalar_Storage_Order

Syntax:
pragma Default_Scalar_Storage_Order (High_ Order_First | Low_Order_First);

Normally if no explicit Scalar_Storage_Order is given for a record type or array type, then
the scalar storage order defaults to the ordinary default for the target. But this default
may be overridden using this pragma. The pragma may appear as a configuration pragma,
or locally within a package spec or declarative part. In the latter case, it applies to all
subsequent types declared within that package spec or declarative part.

The following example shows the use of this pragma:

pragma Default_Scalar_Storage_Order (High_Order_First);
with System; use System;
package DSSO1 is
type H1 is record
a : Integer;
end record;

Chapter 2: Implementation Defined Pragmas 23

type L2 is record
a : Integer;
end record;
for L2’Scalar_Storage_0Order use Low_Order_First;

type L2a is new L2;

package Inner is
type H3 is record
a : Integer;
end record;

pragma Default_Scalar_Storage_Order (Low_Order_First);

type L4 is record
a : Integer;
end record;
end Inner;

type H4a is new Inner.L4;

type H5 is record
a : Integer;
end record;
end DSSO01;

In this example record types L.. have Low_Order_First scalar storage order, and record
types H.. have High_Order_First. Note that in the case of H4a, the order is not inherited
from the parent type. Only an explicitly set Scalar_Storage_Order gets inherited on type
derivation.

If this pragma is used as a configuration pragma which appears within a configuration
pragma file (as opposed to appearing explicitly at the start of a single unit), then the
binder will require that all units in a partition be compiled in a similar manner, other than
run-time units, which are not affected by this pragma. Note that the use of this form is
discouraged because it may significantly degrade the run-time performance of the software,
instead the default scalar storage order ought to be changed only on a local basis.

2.44 Pragma Default_Storage_Pool
Syntax:
pragma Default_Storage_Pool (storage_pool _NAME | null);

This pragma is standard in Ada 2012, but is available in all earlier versions of Ada as an
implementation-defined pragma. See Ada 2012 Reference Manual for details.

2.45 Pragma Depends
For the description of this pragma, see SPARK 2014 Reference Manual, section 6.1.5.

Chapter 2: Implementation Defined Pragmas 24

2.46 Pragma Detect_Blocking

Syntax:
pragma Detect_Blocking;

This is a standard pragma in Ada 2005, that is available in all earlier versions of Ada as an
implementation-defined pragma.

This is a configuration pragma that forces the detection of potentially blocking operations
within a protected operation, and to raise Program_Error if that happens.

2.47 Pragma Disable_Atomic_Synchronization

Syntax:
pragma Disable_Atomic_Synchronization [(Entity)];

Ada requires that accesses (reads or writes) of an atomic variable be regarded as synchro-
nization points in the case of multiple tasks. Particularly in the case of multi-processors
this may require special handling, e.g. the generation of memory barriers. This capability
may be turned off using this pragma in cases where it is known not to be required.

The placement and scope rules for this pragma are the same as those for pragma Suppress.
In particular it can be used as a configuration pragma, or in a declaration sequence where
it applies till the end of the scope. If an Entity argument is present, the action applies only
to that entity.

2.48 Pragma Dispatching_Domain

Syntax:
pragma Dispatching Domain (EXPRESSION);

This pragma is standard in Ada 2012, but is available in all earlier versions of Ada as an
implementation-defined pragma. See Ada 2012 Reference Manual for details.

2.49 Pragma Effective_Reads
For the description of this pragma, see SPARK 2014 Reference Manual, section 7.1.2.

2.50 Pragma Effective_Writes
For the description of this pragma, see SPARK 2014 Reference Manual, section 7.1.2.

2.51 Pragma Elaboration_Checks

Syntax:
pragma Elaboration_Checks (Dynamic | Static);

This is a configuration pragma that provides control over the elaboration model used by
the compilation affected by the pragma. If the parameter is Dynamic, then the dynamic
elaboration model described in the Ada Reference Manual is used, as though the -gnatFE
switch had been specified on the command line. If the parameter is Static, then the default
GNAT static model is used. This configuration pragma overrides the setting of the command
line. For full details on the elaboration models used by the GNAT compiler, see the chapter
on elaboration order handling in the GNAT User’s Guide.

Chapter 2: Implementation Defined Pragmas 25

2.52 Pragma Eliminate

Syntax:

pragma Eliminate ([Entity =>] DEFINING_DESIGNATOR,
[Source_Location =>] STRING_LITERAL);

The string literal given for the source location is a string which specifies the line number of
the occurrence of the entity, using the syntax for SOURCE_TRACE given below:

SOURCE_TRACE : := SOURCE_REFERENCE [LBRACKET SOURCE_TRACE RBRACKET]
LBRACKET ii= [
RBRACKET ii=]

SOURCE_REFERENCE ::

FILE_NAME : LINE_NUMBER

LINE_NUMBER DIGIT {DIGIT}
Spaces around the colon in a Source_Reference are optional.

The DEFINING_DESIGNATOR matches the defining designator used in an explicit sub-
program declaration, where the entity name in this designator appears on the source line
specified by the source location.

The source trace that is given as the Source_Location shall obey the following rules. The
FILE_NAME is the short name (with no directory information) of an Ada source file, given
using exactly the required syntax for the underlying file system (e.g. case is important if the
underlying operating system is case sensitive). LINE_NUMBER gives the line number of
the occurrence of the entity as a decimal literal without an exponent or point. If an entity
is not declared in a generic instantiation (this includes generic subprogram instances), the
source trace includes only one source reference. If an entity is declared inside a generic
instantiation, its source trace (when parsing from left to right) starts with the source location
of the declaration of the entity in the generic unit and ends with the source location of the
instantiation (it is given in square brackets). This approach is recursively used in case of
nested instantiations: the rightmost (nested most deeply in square brackets) element of the
source trace is the location of the outermost instantiation, the next to left element is the
location of the next (first nested) instantiation in the code of the corresponding generic
unit, and so on, and the leftmost element (that is out of any square brackets) is the location
of the declaration of the entity to eliminate in a generic unit.

Note that the Source_Location argument specifies which of a set of similarly named entities
is being eliminated, dealing both with overloading, and also appearance of the same entity
name in different scopes.

This pragma indicates that the given entity is not used in the program to be compiled
and built. The effect of the pragma is to allow the compiler to eliminate the code or data
associated with the named entity. Any reference to an eliminated entity causes a compile-
time or link-time error.

The intention of pragma FEliminate is to allow a program to be compiled in a system-
independent manner, with unused entities eliminated, without needing to modify the source
text. Normally the required set of Eliminate pragmas is constructed automatically using
the gnatelim tool.

Chapter 2: Implementation Defined Pragmas 26

Any source file change that removes, splits, or adds lines may make the set of Eliminate
pragmas invalid because their Source_Location argument values may get out of date.

Pragma Eliminate may be used where the referenced entity is a dispatching operation. In
this case all the subprograms to which the given operation can dispatch are considered to
be unused (are never called as a result of a direct or a dispatching call).

2.53 Pragma Enable_Atomic_Synchronization

Syntax:
pragma Enable_Atomic_Synchronization [(Entity)];

Ada requires that accesses (reads or writes) of an atomic variable be regarded as synchroniza-
tion points in the case of multiple tasks. Particularly in the case of multi-processors this may
require special handling, e.g. the generation of memory barriers. This synchronization is
performed by default, but can be turned off using pragma Disable_Atomic_Synchronization.
The Enable_Atomic_Synchronization pragma can be used to turn it back on.

The placement and scope rules for this pragma are the same as those for pragma Unsuppress.
In particular it can be used as a configuration pragma, or in a declaration sequence where
it applies till the end of the scope. If an Entity argument is present, the action applies only
to that entity.

2.54 Pragma Export_Function

Syntax:
pragma Export_Function (
[Internal =>] LOCAL_NAME
[, [External =>] EXTERNAL_SYMBOL]
[, [Parameter_Types =>] PARAMETER_TYPES]
[, [Result_Type =>] result_SUBTYPE_MARK]
[, [Mechanism =>] MECHANISM]
[

[Result_Mechanism =>] MECHANISM_NAME]);

-

EXTERNAL_SYMBOL ::=
IDENTIFIER
| static_string EXPRESSION

| nn

PARAMETER_TYPES ::
null
| TYPE_DESIGNATOR {, TYPE_DESIGNATOR}

TYPE_DESIGNATOR ::
subtype_NAME
| subtype_Name ’ Access

MECHANISM ::=
MECHANISM_NAME
| (MECHANISM_ASSOCIATION {, MECHANISM_ASSOCIATION})

Chapter 2: Implementation Defined Pragmas 27

MECHANISM_ASSOCIATION ::=
[formal_parameter_ NAME =>] MECHANISM_NAME

MECHANISM_NAME ::= Value | Reference

Use this pragma to make a function externally callable and optionally provide information
on mechanisms to be used for passing parameter and result values. We recommend, for
the purposes of improving portability, this pragma always be used in conjunction with a
separate pragma Export, which must precede the pragma Export_Function. GNAT does not
require a separate pragma Export, but if none is present, Convention Ada is assumed, which
is usually not what is wanted, so it is usually appropriate to use this pragma in conjunction
with a Export or Convention pragma that specifies the desired foreign convention. Pragma
Export_Function (and Export, if present) must appear in the same declarative region as
the function to which they apply.

internal_name must uniquely designate the function to which the pragma applies. If more
than one function name exists of this name in the declarative part you must use the Pa-
rameter_Types and Result_Type parameters is mandatory to achieve the required unique
designation. subtype_mark's in these parameters must exactly match the subtypes in the
corresponding function specification, using positional notation to match parameters with
subtype marks. The form with an “Access attribute can be used to match an anonymous
access parameter.

Special treatment is given if the EXTERNAL is an explicit null string or a static string
expressions that evaluates to the null string. In this case, no external name is generated.
This form still allows the specification of parameter mechanisms.

2.55 Pragma Export_Object

Syntax:

pragma Export_0Object
[Internal =>] LOCAL_NAME
[, [External =>] EXTERNAL_SYMBOL]
[, [Size =>] EXTERNAL_SYMBOL]

EXTERNAL_SYMBOL ::=
IDENTIFIER
| static_string_EXPRESSION

This pragma designates an object as exported, and apart from the extended rules for ex-
ternal symbols, is identical in effect to the use of the normal Export pragma applied to an
object. You may use a separate Export pragma (and you probably should from the point

of view of portability), but it is not required. Size is syntax checked, but otherwise ignored
by GNAT.

2.56 Pragma Export_Procedure

Syntax:
pragma Export_Procedure (

Chapter 2: Implementation Defined Pragmas 28

[Internal =>] LOCAL_NAME
[, [External =>] EXTERNAL_SYMBOL]
[, [Parameter_Types =>] PARAMETER_TYPES]
[, [Mechanism =>] MECHANISM]);

EXTERNAL_SYMBOL ::=
IDENTIFIER
| static_string EXPRESSION

| nn

PARAMETER_TYPES ::
null
| TYPE_DESIGNATOR {, TYPE_DESIGNATOR}

TYPE_DESIGNATOR ::
subtype_NAME
| subtype_Name ’ Access

MECHANISM ::=
MECHANISM_NAME
| (MECHANISM_ASSOCIATION {, MECHANISM_ASSOCIATION})

MECHANISM_ASSOCIATION ::=
[formal_parameter_ NAME =>] MECHANISM_NAME

MECHANISM_NAME ::= Value | Reference

This pragma is identical to Export_Function except that it applies to a procedure rather
than a function and the parameters Result_Type and Result_Mechanism are not permitted.
GNAT does not require a separate pragma Export, but if none is present, Convention Ada
is assumed, which is usually not what is wanted, so it is usually appropriate to use this
pragma in conjunction with a Export or Convention pragma that specifies the desired
foreign convention.

Special treatment is given if the EXTERNAL is an explicit null string or a static string
expressions that evaluates to the null string. In this case, no external name is generated.
This form still allows the specification of parameter mechanisms.

2.57 Pragma Export_Value
Syntax:

pragma Export_Value (
[Value =>] static_integer_ EXPRESSION,
[Link_Name =>] static_string EXPRESSION) ;

This pragma serves to export a static integer value for external use. The first argument
specifies the value to be exported. The Link_Name argument specifies the symbolic name to
be associated with the integer value. This pragma is useful for defining a named static value
in Ada that can be referenced in assembly language units to be linked with the application.

Chapter 2: Implementation Defined Pragmas 29

This pragma is currently supported only for the AAMP target and is ignored for other
targets.

2.58 Pragma Export_Valued_Procedure

Syntax:
pragma Export_Valued_Procedure (
[Internal =>] LOCAL_NAME
[, [External =>] EXTERNAL_SYMBOL]
[, [Parameter_Types =>] PARAMETER_TYPES]
[, [Mechanism =>] MECHANISM]);

EXTERNAL_SYMBOL ::=
IDENTIFIER
| static_string EXPRESSION

| nn

PARAMETER_TYPES ::
null
| TYPE_DESIGNATOR {, TYPE_DESIGNATOR}

TYPE_DESIGNATOR ::
subtype_NAME
| subtype_Name ’ Access

MECHANISM ::=
MECHANISM_NAME
| (MECHANISM_ASSOCIATION {, MECHANISM_ASSOCIATION})

MECHANISM_ASSOCIATION ::=
[formal_parameter_ NAME =>] MECHANISM_NAME

MECHANISM_NAME ::= Value | Reference

This pragma is identical to Export_Procedure except that the first parameter of LO-
CAL_NAME, which must be present, must be of mode OUT, and externally the subprogram
is treated as a function with this parameter as the result of the function. GNAT provides for
this capability to allow the use of OUT and IN OUT parameters in interfacing to external
functions (which are not permitted in Ada functions). GNAT does not require a separate
pragma Export, but if none is present, Convention Ada is assumed, which is almost cer-
tainly not what is wanted since the whole point of this pragma is to interface with foreign
language functions, so it is usually appropriate to use this pragma in conjunction with a
Export or Convention pragma that specifies the desired foreign convention.

Special treatment is given if the EXTERNAL is an explicit null string or a static string
expressions that evaluates to the null string. In this case, no external name is generated.
This form still allows the specification of parameter mechanisms.

Chapter 2: Implementation Defined Pragmas 30

2.59 Pragma Extend_System

Syntax:
pragma Extend_System ([Name =>] IDENTIFIER);

This pragma is used to provide backwards compatibility with other implementations that
extend the facilities of package System. In GNAT, System contains only the definitions
that are present in the Ada RM. However, other implementations, notably the DEC Ada
83 implementation, provide many extensions to package System.

For each such implementation accommodated by this pragma, GNAT provides a package
Aux_‘xxx‘, e.g., Aux_DEC for the DEC Ada 83 implementation, which provides the required
additional definitions. You can use this package in two ways. You can with it in the normal
way and access entities either by selection or using a use clause. In this case no special
processing is required.

However, if existing code contains references such as System. ‘xxx‘ where xxx is an entity in
the extended definitions provided in package System, you may use this pragma to extend
visibility in System in a non-standard way that provides greater compatibility with the
existing code. Pragma Extend_System is a configuration pragma whose single argument is
the name of the package containing the extended definition (e.g., Aux_DEC for the DEC
Ada case). A unit compiled under control of this pragma will be processed using special
visibility processing that looks in package System.Aux_‘xxx‘ where Aux_‘xxx‘ is the pragma
argument for any entity referenced in package System, but not found in package System.

You can use this pragma either to access a predefined System extension supplied with the
compiler, for example Aux_DEC or you can construct your own extension unit following the
above definition. Note that such a package is a child of System and thus is considered part
of the implementation. To compile it you will have to use the -gnatg switch for compiling
System units, as explained in the GNAT User’s Guide.

2.60 Pragma Extensions_Allowed

Syntax:
pragma Extensions_Allowed (On | 0ff);

This configuration pragma enables or disables the implementation extension mode (the use
of Off as a parameter cancels the effect of the -gnatX command switch).

In extension mode, the latest version of the Ada language is implemented (currently Ada
2012), and in addition a small number of GNAT specific extensions are recognized as follows:

Constrained attribute for generic objects
The Constrained attribute is permitted for objects of generic types. The result
indicates if the corresponding actual is constrained.

2.61