The GNU Binary Utilities

(GNU Binutils)
Version 2.24

December 2013

Roland H. Pesch
Jeffrey M. Osier
Cygnus Support

Cygnus Support
Texinfo 2007-06-20.13

Copyright (©) 1991-2013 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.3 or any later version published by the
Free Software Foundation; with no Invariant Sections, with no Front-Cover Texts, and with
no Back-Cover Texts. A copy of the license is included in the section entitled “GNU Free

Documentation License”.

Table of Contents

Introduction 1
L ar . 2

1.1 Controlling ar on the Command Line.cooveeeenon.. 3

1.2 Controlling ar with a SCTipt.veeeeee e 6
7/ 1 9
3 DI . 10
4 ODJCOPY .. i 15
5 objdump 28
6 ranlib........ 37
T SIZE .o 38
8 Strings........... 40
9 Strip 42
10 cH4filt. .o 46
11 addr2line.............. i, 48
12 nlmconv...... 50
13 windme 52
14 windres. ... 55
15 dltool............. 58

15.1 The format of the d11tool ‘.def’ file 63

16 readelf. 64

17 elfedit............ .. 68
18 Common Options 70
19 Selecting the Target System................. 71
19.1 Target Selection 71
19.2 Architecture Selection........ i 72
20 Reporting Bugs 73
20.1 Have You Found a Bug?o i 73
20.2 How to Report Bugs........ ... o i 73

Appendix A GNU Free Documentation License
.. 76

ii

Introduction 1

Introduction

This brief manual contains documentation for the GNU binary utilities (GNU Binutils)
version 2.24:

ar Create, modify, and extract from archives
nm List symbols from object files

objcopy Copy and translate object files

objdump Display information from object files
ranlib Generate index to archive contents
readelf Display the contents of ELF format files.
size List file section sizes and total size
strings List printable strings from files

strip Discard symbols

elfedit Update the ELF header of ELF files.
c++filt Demangle encoded C++ symbols (on MS-DOS, this program is named cxxfilt)

addr2line
Convert addresses into file names and line numbers

nlmconv Convert object code into a Netware Loadable Module

windres Manipulate Windows resources

windmc Generator for Windows message resources

dlltool Create the files needed to build and use Dynamic Link Libraries

This document is distributed under the terms of the GNU Free Documentation License
version 1.3. A copy of the license is included in the section entitled “GNU Free Documen-
tation License”.

Chapter 1: ar 2

1 ar

ar [‘--plugin’ name] [-]pl[mod [relpos] [count]] [‘--target’ bfdname] archive [member...

ar -M [<mri-script]

The GNU ar program creates, modifies, and extracts from archives. An archive is a single
file holding a collection of other files in a structure that makes it possible to retrieve the
original individual files (called members of the archive).

The original files’ contents, mode (permissions), timestamp, owner, and group are pre-
served in the archive, and can be restored on extraction.

GNU ar can maintain archives whose members have names of any length; however, de-
pending on how ar is configured on your system, a limit on member-name length may be
imposed for compatibility with archive formats maintained with other tools. If it exists, the
limit is often 15 characters (typical of formats related to a.out) or 16 characters (typical of
formats related to coff).

ar is considered a binary utility because archives of this sort are most often used as
libraries holding commonly needed subroutines.

ar creates an index to the symbols defined in relocatable object modules in the archive
when you specify the modifier ‘s’. Once created, this index is updated in the archive
whenever ar makes a change to its contents (save for the ‘q’ update operation). An archive
with such an index speeds up linking to the library, and allows routines in the library to
call each other without regard to their placement in the archive.

You may use ‘nm -s’ or ‘nm --print-armap’ to list this index table. If an archive lacks
the table, another form of ar called ranlib can be used to add just the table.

GNU ar can optionally create a thin archive, which contains a symbol index and references
to the original copies of the member files of the archive. This is useful for building libraries
for use within a local build tree, where the relocatable objects are expected to remain
available, and copying the contents of each object would only waste time and space.

An archive can either be thin or it can be normal. It cannot be both at the same time.
Once an archive is created its format cannot be changed without first deleting it and then
creating a new archive in its place.

Thin archives are also flattened, so that adding one thin archive to another thin archive
does not nest it, as would happen with a normal archive. Instead the elements of the first
archive are added individually to the second archive.

The paths to the elements of the archive are stored relative to the archive itself.

GNU ar is designed to be compatible with two different facilities. You can control its
activity using command-line options, like the different varieties of ar on Unix systems; or,
if you specify the single command-line option ‘-M’, you can control it with a script supplied
via standard input, like the MRI “librarian” program.

Chapter 1: ar 3

1.1 Controlling ar on the Command Line

ar [‘--plugin’ name] [¢-X32_64’] [‘-’]1p[mod [relpos] [count]] [‘--target’ bfdname] archive [mem-
ber...]
When you use ar in the Unix style, ar insists on at least two arguments to execute: one
keyletter specifying the operation (optionally accompanied by other keyletters specifying
modifiers), and the archive name to act on.

Most operations can also accept further member arguments, specifying particular files
to operate on.

GNU ar allows you to mix the operation code p and modifier flags mod in any order,
within the first command-line argument.

If you wish, you may begin the first command-line argument with a dash.
The p keyletter specifies what operation to execute; it may be any of the following, but
you must specify only one of them:
‘&’ Delete modules from the archive. Specify the names of modules to be deleted
as member. . .; the archive is untouched if you specify no files to delete.

If you specify the ‘v’ modifier, ar lists each module as it is deleted.

m Use this operation to move members in an archive.

The ordering of members in an archive can make a difference in how programs
are linked using the library, if a symbol is defined in more than one member.

If no modifiers are used with m, any members you name in the member ar-
guments are moved to the end of the archive; you can use the ‘a’, ‘b’, or ‘i’
modifiers to move them to a specified place instead.

) Print the specified members of the archive, to the standard output file. If the
‘v’ modifier is specified, show the member name before copying its contents to
standard output.

If you specify no member arguments, all the files in the archive are printed.

q Quick append; Historically, add the files member. .. to the end of archive,
without checking for replacement.

The modifiers ‘a’, ‘b’, and ‘i’ do not affect this operation; new members are
always placed at the end of the archive.

The modifier ‘v’ makes ar list each file as it is appended.

Since the point of this operation is speed, implementations of ar have the option
of not updating the archive’s symbol table if one exists. Too many different
systems however assume that symbol tables are always up-to-date, so GNU ar
will rebuild the table even with a quick append.

Note - GNU ar treats the command ‘gs’ as a synonym for ‘r’ - replacing already
existing files in the archive and appending new ones at the end.

r Insert the files member. .. into archive (with replacement). This operation
differs from ‘q’ in that any previously existing members are deleted if their
names match those being added.

Chapter 1:

‘~==help’

If one of the files named in member. .. does not exist, ar displays an error
message, and leaves undisturbed any existing members of the archive matching
that name.

By default, new members are added at the end of the file; but you may use one
of the modifiers ‘a’, ‘b’, or ‘i’ to request placement relative to some existing
member.

The modifier ‘v’ used with this operation elicits a line of output for each file
inserted, along with one of the letters ‘a’ or ‘r’ to indicate whether the file was
appended (no old member deleted) or replaced.

Add an index to the archive, or update it if it already exists. Note this command
is an exception to the rule that there can only be one command letter, as it is
possible to use it as either a command or a modifier. In either case it does the
same thing.

Display a table listing the contents of archive, or those of the files listed in
member. .. that are present in the archive. Normally only the member name
is shown; if you also want to see the modes (permissions), timestamp, owner,
group, and size, you can request that by also specifying the ‘v’ modifier.

If you do not specify a member, all files in the archive are listed.

If there is more than one file with the same name (say, ‘fie’) in an archive (say
‘b.a’), ‘ar t b.a fie’ lists only the first instance; to see them all, you must ask
for a complete listing—in our example, ‘ar t b.a’.

Eztract members (named member) from the archive. You can use the ‘v’ mod-
ifier with this operation, to request that ar list each name as it extracts it.
If you do not specify a member, all files in the archive are extracted.

Files cannot be extracted from a thin archive.

Displays the list of command line options supported by ar and then exits.

‘——version’

Displays the version information of ar and then exits.

A number of modifiers (mod) may immediately follow the p keyletter, to specify varia-
tions on an operation’s behavior:

Add new files after an existing member of the archive. If you use the modifier
‘a’, the name of an existing archive member must be present as the relpos
argument, before the archive specification.

Add new files before an existing member of the archive. If you use the modifier
‘b’, the name of an existing archive member must be present as the relpos
argument, before the archive specification. (same as ‘i’).

Create the archive. The specified archive is always created if it did not exist,
when you request an update. But a warning is issued unless you specify in
advance that you expect to create it, by using this modifier.

Operate in deterministic mode. When adding files and the archive index use
zero for UlDs, GIDs, timestamps, and use consistent file modes for all files.

Chapter 1: ar 5)

When this option is used, if ar is used with identical options and identical input
files, multiple runs will create identical output files regardless of the input files’
owners, groups, file modes, or modification times.

If ‘binutils’ was configured with ‘~-enable-deterministic-archives’, then
this mode is on by default. It can be disabled with the ‘U’ modifier, below.

Truncate names in the archive. GNU ar will normally permit file names of any
length. This will cause it to create archives which are not compatible with the
native ar program on some systems. If this is a concern, the ‘f’ modifier may
be used to truncate file names when putting them in the archive.

Insert new files before an existing member of the archive. If you use the modifier
‘i’, the name of an existing archive member must be present as the relpos
argument, before the archive specification. (same as ‘b’).

This modifier is accepted but not used.

Uses the count parameter. This is used if there are multiple entries in the
archive with the same name. Extract or delete instance count of the given
name from the archive.

Preserve the original dates of members when extracting them. If you do not
specify this modifier, files extracted from the archive are stamped with the time
of extraction.

Use the full path name when matching names in the archive. GNU ar can
not create an archive with a full path name (such archives are not POSIX
complaint), but other archive creators can. This option will cause GNU ar to
match file names using a complete path name, which can be convenient when
extracting a single file from an archive created by another tool.

Write an object-file index into the archive, or update an existing one, even if no
other change is made to the archive. You may use this modifier flag either with
any operation, or alone. Running ‘ar s’ on an archive is equivalent to running
‘ranlib’ on it.

Do not generate an archive symbol table. This can speed up building a large
library in several steps. The resulting archive can not be used with the linker.
In order to build a symbol table, you must omit the ‘S’ modifier on the last
execution of ‘ar’, or you must run ‘ranlib’ on the archive.

Make the specified archive a thin archive. If it already exists and is a regular
archive, the existing members must be present in the same directory as archive.

Normally, ‘ar r’... inserts all files listed into the archive. If you would like
to insert only those of the files you list that are newer than existing members
of the same names, use this modifier. The ‘v’ modifier is allowed only for the
operation ‘r’ (replace). In particular, the combination ‘qu’ is not allowed, since
checking the timestamps would lose any speed advantage from the operation

6q7'
Do not operate in deterministic mode. This is the inverse of the ‘D’ modi-
fier, above: added files and the archive index will get their actual UID, GID,

timestamp, and file mode values.

Chapter 1: ar 6

This is the default unless ‘binutils’ was configured with ‘--enable-deterministic-archives’.

v This modifier requests the verbose version of an operation. Many operations
display additional information, such as filenames processed, when the modifier
‘v’ is appended.

v’ This modifier shows the version number of ar.

ar ignores an initial option spelt ‘-X32_64’, for compatibility with AIX. The behaviour
produced by this option is the default for GNU ar. ar does not support any of the other
‘=X’ options; in particular, it does not support ‘-X32’ which is the default for AIX ar.

The optional command line switch ‘--plugin’ name causes ar to load the plugin called
name which adds support for more file formats. This option is only available if the toolchain
has been built with plugin support enabled.

The optional command line switch ‘~-target’ bfdname specifies that the archive mem-
bers are in an object code format different from your system’s default format. See See
Section 19.1 [Target Selection], page 71, for more information.

1.2 Controlling ar with a Script
ar -M [<script]

If you use the single command-line option ‘-M’ with ar, you can control its operation
with a rudimentary command language. This form of ar operates interactively if standard
input is coming directly from a terminal. During interactive use, ar prompts for input (the
prompt is ‘AR >’), and continues executing even after errors. If you redirect standard input
to a script file, no prompts are issued, and ar abandons execution (with a nonzero exit
code) on any error.

The ar command language is not designed to be equivalent to the command-line options;
in fact, it provides somewhat less control over archives. The only purpose of the command
language is to ease the transition to GNU ar for developers who already have scripts written
for the MRI “librarian” program.

The syntax for the ar command language is straightforward:

e commands are recognized in upper or lower case; for example, LIST is the same as
list. In the following descriptions, commands are shown in upper case for clarity.

e a single command may appear on each line; it is the first word on the line.
e empty lines are allowed, and have no effect.
e comments are allowed; text after either of the characters ‘*’ or ¢;’ is ignored.

e Whenever you use a list of names as part of the argument to an ar command, you can
separate the individual names with either commas or blanks. Commas are shown in
the explanations below, for clarity.

e ‘+’is used as a line continuation character; if ‘+” appears at the end of a line, the text
on the following line is considered part of the current command.
Here are the commands you can use in ar scripts, or when using ar interactively. Three
of them have special significance:

OPEN or CREATE specify a current archive, which is a temporary file required for most of
the other commands.

Chapter 1: ar 7

SAVE commits the changes so far specified by the script. Prior to SAVE, commands affect
only the temporary copy of the current archive.

ADDLIB archive

ADDLIB archive (module, module, ... module)
Add all the contents of archive (or, if specified, each named module from
archive) to the current archive.

Requires prior use of OPEN or CREATE.

ADDMOD member, member, ... member
Add each named member as a module in the current archive.

Requires prior use of OPEN or CREATE.

CLEAR Discard the contents of the current archive, canceling the effect of any operations
since the last SAVE. May be executed (with no effect) even if no current archive
is specified.

CREATE archive
Creates an archive, and makes it the current archive (required for many other
commands). The new archive is created with a temporary name; it is not actu-
ally saved as archive until you use SAVE. You can overwrite existing archives;
similarly, the contents of any existing file named archive will not be destroyed
until SAVE.

DELETE module, module, ... module
Delete each listed module from the current archive; equivalent to ‘ar -d
archive module ... module’.

Requires prior use of OPEN or CREATE.

DIRECTORY archive (module, ... module)

DIRECTORY archive (module, ... module) outputfile
List each named module present in archive. The separate command VERBOSE
specifies the form of the output: when verbose output is off, output is like that
of ‘ar -t archive module...’. When verbose output is on, the listing is like
‘ar -tv archive module...’.

Output normally goes to the standard output stream; however, if you specify
outputfile as a final argument, ar directs the output to that file.

END Exit from ar, with a 0 exit code to indicate successful completion. This com-
mand does not save the output file; if you have changed the current archive
since the last SAVE command, those changes are lost.

EXTRACT module, module, ... module
Extract each named module from the current archive, writing them into the
current directory as separate files. Equivalent to ‘ar -x archive module. ..’ .

Requires prior use of OPEN or CREATE.

¢

LIST Display full contents of the current archive, in “verbose” style regardless of the
state of VERBOSE. The effect is like ‘ar tv archive’. (This single command is
a GNU ar enhancement, rather than present for MRI compatibility.)

Requires prior use of OPEN or CREATE.

Chapter 1: ar 8

OPEN archive
Opens an existing archive for use as the current archive (required for many
other commands). Any changes as the result of subsequent commands will not
actually affect archive until you next use SAVE.

REPLACE module, module, ... module
In the current archive, replace each existing module (named in the REPLACE ar-
guments) from files in the current working directory. To execute this command
without errors, both the file, and the module in the current archive, must exist.

Requires prior use of OPEN or CREATE.

VERBOSE Toggle an internal flag governing the output from DIRECTORY. When the flag
is on, DIRECTORY output matches output from ‘ar -tv ’. ...

SAVE Commit your changes to the current archive, and actually save it as a file with
the name specified in the last CREATE or OPEN command.

Requires prior use of OPEN or CREATE.

Chapter 2: 1d 9

2 1d

The GNU linker 1d is now described in a separate manual. See section “Overview” in Using
LD: the ¢NU linker.

Chapter 3: nm 10
3 nm
nm [‘-A’|¢-0’|‘--print-file-name’] [‘-a’|‘--debug-syms’]
[-B’ | ‘--format=bsd’] [‘-C’|‘--demangle’ [=style]]
[“-D’| ‘--dynamic’] [‘-f’format|‘--format=’format]
[‘-g’ | ‘--extern-only’] [‘-h’|‘--help’]
[-1°]|‘--1line-numbers’] [‘-n’|‘-v’|‘--numeric-sort’]
[‘-P’| ‘--portability’] [‘-p’|‘--no-sort’]
[‘-r’|‘--reverse-sort’] [‘-S’|‘--print-size’]
[‘-s’| ‘--print-armap’] [‘-t’ radix|‘--radix=’radix]
[‘-u’ | ‘--undefined-only’] [‘-V’|‘--version’]
[“-X 32_64’] [‘--defined-only’] [‘--no-demangle’]
[‘--plugin’ name] [‘--size-sort’] [‘--special-syms’]
[“--synthetic’] [‘--target=’bfdname]
[objfile...]
GNU nm lists the symbols from object files objfile. ... If no object files are listed as

arguments, nm assumes the file ‘a.out’.

For each symbol, nm shows:

e The symbol value, in the radix selected by options (see below), or hexadecimal by

default.

e The symbol type. At least the following types are used; others are, as well, depending
on the object file format. If lowercase, the symbol is usually local; if uppercase, the
symbol is global (external). There are however a few lowercase symbols that are shown
for special global symbols (u, v and w).

A

B
b
C

| A O

The symbol’s value is absolute, and will not be changed by further linking.

The symbol is in the uninitialized data section (known as BSS).

The symbol is common. Common symbols are uninitialized data. When
linking, multiple common symbols may appear with the same name. If the
symbol is defined anywhere, the common symbols are treated as undefined
references. For more details on common symbols, see the discussion of
—warn-common in section “Linker options” in The GNU linker.

The symbol is in the initialized data section.

The symbol is in an initialized data section for small objects. Some object
file formats permit more efficient access to small data objects, such as a
global int variable as opposed to a large global array.

For PE format files this indicates that the symbol is in a section specific to
the implementation of DLLs. For ELF format files this indicates that the
symbol is an indirect function. This is a GNU extension to the standard
set of ELF symbol types. It indicates a symbol which if referenced by a
relocation does not evaluate to its address, but instead must be invoked at
runtime. The runtime execution will then return the value to be used in
the relocation.

The symbol is an indirect reference to another symbol.

Chapter 3: nm

n n K ™ T =

[«

?

11

The symbol is a debugging symbol.

The symbols is in a stack unwind section.
The symbol is in a read only data section.
The symbol is in an uninitialized data section for small objects.

The symbol is in the text (code) section.
The symbol is undefined.

The symbol is a unique global symbol. This is a GNU extension to the
standard set of ELF symbol bindings. For such a symbol the dynamic
linker will make sure that in the entire process there is just one symbol
with this name and type in use.

The symbol is a weak object. When a weak defined symbol is linked with
a normal defined symbol, the normal defined symbol is used with no error.
When a weak undefined symbol is linked and the symbol is not defined, the
value of the weak symbol becomes zero with no error. On some systems,
uppercase indicates that a default value has been specified.

The symbol is a weak symbol that has not been specifically tagged as a
weak object symbol. When a weak defined symbol is linked with a normal
defined symbol, the normal defined symbol is used with no error. When a
weak undefined symbol is linked and the symbol is not defined, the value
of the symbol is determined in a system-specific manner without error. On
some systems, uppercase indicates that a default value has been specified.

The symbol is a stabs symbol in an a.out object file. In this case, the next
values printed are the stabs other field, the stabs desc field, and the stab
type. Stabs symbols are used to hold debugging information.

The symbol type is unknown, or object file format specific.

e The symbol name.

The long and short forms of options, shown here as alternatives, are equivalent.

-A
-0

--print-file-name
Precede each symbol by the name of the input file (or archive member) in which
it was found, rather than identifying the input file once only, before all of its
symbols.

-a
—--debug-syms

Display all symbols, even debugger-only symbols; normally these are not listed.

Chapter 3: nm 12

-B The same as ‘--format=bsd’ (for compatibility with the MIPS nm).

-C

--demangle[=style]
Decode (demangle) low-level symbol names into user-level names. Besides re-
moving any initial underscore prepended by the system, this makes C++ func-
tion names readable. Different compilers have different mangling styles. The
optional demangling style argument can be used to choose an appropriate de-
mangling style for your compiler. See Chapter 10 [c++filt], page 46, for more
information on demangling.

--no-demangle
Do not demangle low-level symbol names. This is the default.

-D

--dynamic
Display the dynamic symbols rather than the normal symbols. This is only
meaningful for dynamic objects, such as certain types of shared libraries.

-f format

--format=format
Use the output format format, which can be bsd, sysv, or posix. The default
is bsd. Only the first character of format is significant; it can be either upper
or lower case.

g
--extern-only
Display only external symbols.

-h
--help Show a summary of the options to nm and exit.

-1

--line-numbers
For each symbol, use debugging information to try to find a filename and line
number. For a defined symbol, look for the line number of the address of the
symbol. For an undefined symbol, look for the line number of a relocation entry
which refers to the symbol. If line number information can be found, print it
after the other symbol information.

-n
-v
—-—numeric-sort
Sort symbols numerically by their addresses, rather than alphabetically by their
names.

Y

--no-sort
Do not bother to sort the symbols in any order; print them in the order en-
countered.

Chapter 3: nm 13

-P

--portability
Use the POSIX.2 standard output format instead of the default format. Equiv-
alent to ‘~f posix’.

-r

--reverse-sort
Reverse the order of the sort (whether numeric or alphabetic); let the last come
first.

-3

--print-size
Print both value and size of defined symbols for the bsd output style. This
option has no effect for object formats that do not record symbol sizes, unless
‘--size-sort’ is also used in which case a calculated size is displayed.

-s

--print-armap
When listing symbols from archive members, include the index: a mapping
(stored in the archive by ar or ranlib) of which modules contain definitions
for which names.

-t radix

--radix=radix
Use radix as the radix for printing the symbol values. It must be ‘d’ for decimal,
‘o’ for octal, or ‘x’ for hexadecimal.

-u
--undefined-only
Display only undefined symbols (those external to each object file).

-V
—--version
Show the version number of nm and exit.

-X This option is ignored for compatibility with the AIX version of nm. It takes
one parameter which must be the string ‘32_64’. The default mode of AIX nm
corresponds to ‘=X 32’, which is not supported by GNU nm.

--defined-only
Display only defined symbols for each object file.

--plugin name
Load the plugin called name to add support for extra target types. This option
is only available if the toolchain has been built with plugin support enabled.

--size-sort
Sort symbols by size. The size is computed as the difference between the value
of the symbol and the value of the symbol with the next higher value. If the
bsd output format is used the size of the symbol is printed, rather than the
value, and ‘-8’ must be used in order both size and value to be printed.

Chapter 3: nm 14

--special-syms
Display symbols which have a target-specific special meaning. These symbols
are usually used by the target for some special processing and are not normally
helpful when included in the normal symbol lists. For example for ARM targets
this option would skip the mapping symbols used to mark transitions between
ARM code, THUMB code and data.

--synthetic
Include synthetic symbols in the output. These are special symbols created by
the linker for various purposes. They are not shown by default since they are
not part of the binary’s original source code.

--target=bfdname
Specify an object code format other than your system’s default format. See
Section 19.1 [Target Selection], page 71, for more information.

Chapter 4: objcopy 15

4 objcopy

objcopy [‘-F’ bfdname | ‘--target=’bfdname]
[“-I’ bfdname|‘--input-target=’bfdname]
[¢-0’ bfdname | ‘--output-target=’bfdname]
[-B’ bfdarch|‘--binary-architecture=’bfdarch]
[‘-S’|‘--strip-all’]

[‘-g’| ‘--strip-debug’]
[“-K’ symbolname | ‘--keep-symbol=’symbolname]
[‘-N’ symbolname | ‘--strip-symbol=’symbolname]

[¢--strip-unneeded-symbol=’symbolname]

[‘-G’ symbolname | ‘--keep-global-symbol=’symbolname]
[‘--localize-hidden’]

[‘-L’> symbolname | ‘--localize-symbol=’symbolname]
[‘--globalize-symbol=’symbolname]

[“-W’> symbolname | ‘--weaken-symbol=’symbolname]
[‘-w’ | ‘--wildcard’]

[‘-x’|‘--discard-all’]

[‘-X’|‘--discard-locals’]

[‘-b’ bytel ‘--byte=’bytel]

[“-i> [breadth]|‘--interleave’ [=breadth]]
[‘--interleave-width=’width]

[‘-j’ sectionpattern|‘--only-section=’sectionpattern]
[‘-R’ sectionpattern|‘--remove-section=’sectionpattern]
[“-p’| ‘--preserve-dates’]

[“-D’| ‘--enable-deterministic-archives’]
[¢-U’|‘--disable-deterministic-archives’]

[“--debugging’]

[‘--gap-fill="vall

[“--pad-to=’address]

[‘--set-start=’vall]

[¢--adjust-start=’incr]
[“--change-addresses=’incr]
[‘--change-section-address’ sectionpattern{=,+,-}vall
[‘--change-section-1lma’ sectionpattern{=,+,-}vall
[‘--change-section-vma’ sectionpattern{=,+,-}vall
[‘--change-warnings’] [‘--no-change-warnings’]
[‘--set-section-flags’ sectionpattern=flags]
[‘--add-section’ sectionname=filename]
[¢--rename-section’ oldname=newname [,flags]]
[‘--long-section-names’ {enable,disable,keep}]
[‘--change-leading-char’] [‘--remove-leading-char’]
[“--reverse-bytes=’num]

[‘--srec-len=’ival] [‘--srec-forceS3’]
[¢--redefine-sym’ old=new]
[‘--redefine-syms=’filename]

[“--weaken’]

[“--keep-symbols=’filename]
[¢--strip-symbols=’filename]
[“--strip-unneeded-symbols=’filename]
[¢--keep-global-symbols=’filename]
[‘--localize-symbols=’filename]
[‘--globalize-symbols=’filename]
[‘--weaken-symbols=’filename]
[‘--alt-machine-code=’index]
[¢--prefix-symbols=’string]
[“--prefix-sections=’string]
[‘--prefix-alloc-sections=’string]
[¢--add-gnu-debuglink=’path-to-file]

Chapter 4: objcopy 16

[¢--keep-file-symbols’]
[“--only-keep-debug’]
[‘--strip-dwo’]
[“--extract-dwo’]
[‘--extract-symbol’]
[‘--writable-text’]
[¢--readonly-text’]
[‘--pure’]

[“--impure’]
[‘--file-alignment=’num]
[‘--heap="size]
[‘--image-base=’address]
[‘--section-alignment=’num]
[“--stack=’size]
[“--subsystem=’which :major.minor]
[¢--compress-debug-sections’]
[“--decompress-debug-sections’]
[¢--dwarf-depth=n’]
[‘--dwarf-start=n’]
[“-v’|‘--verbose’]
[“-V’|‘--version’]

[“--help’] [‘--info’]

infile [outfile]

The GNU objcopy utility copies the contents of an object file to another. objcopy uses
the GNU BFD Library to read and write the object files. It can write the destination object
file in a format different from that of the source object file. The exact behavior of objcopy
is controlled by command-line options. Note that objcopy should be able to copy a fully
linked file between any two formats. However, copying a relocatable object file between any
two formats may not work as expected.

objcopy creates temporary files to do its translations and deletes them afterward.
objcopy uses BFD to do all its translation work; it has access to all the formats described
in BFD and thus is able to recognize most formats without being told explicitly. See section
“BFD” in Using LD.

objcopy can be used to generate S-records by using an output target of ‘srec’ (e.g., use
‘-0 srec’).

objcopy can be used to generate a raw binary file by using an output target of ‘binary’
(e.g., use ‘-0 binary’). When objcopy generates a raw binary file, it will essentially pro-
duce a memory dump of the contents of the input object file. All symbols and relocation
information will be discarded. The memory dump will start at the load address of the
lowest section copied into the output file.

When generating an S-record or a raw binary file, it may be helpful to use ‘=S’ to
remove sections containing debugging information. In some cases ‘-R’ will be useful to
remove sections which contain information that is not needed by the binary file.

Note—objcopy is not able to change the endianness of its input files. If the input format
has an endianness (some formats do not), objcopy can only copy the inputs into file formats
that have the same endianness or which have no endianness (e.g., ‘srec’). (However, see
the ‘--reverse-bytes’ option.)

Chapter 4: objcopy 17

infile

outfile The input and output files, respectively. If you do not specify outfile, objcopy
creates a temporary file and destructively renames the result with the name of
infile.

-1 bfdname

--input-target=bfdname
Consider the source file’s object format to be bfdname, rather than attempting
to deduce it. See Section 19.1 [Target Selection], page 71, for more information.

-0 bfdname

--output-target=bfdname
Write the output file using the object format bfdname. See Section 19.1 [Target
Selection], page 71, for more information.

-F bfdname

-—-target=bfdname
Use bfdname as the object format for both the input and the output file; i.e.,
simply transfer data from source to destination with no translation. See Sec-
tion 19.1 [Target Selection], page 71, for more information.

-B bfdarch

--binary-architecture=bfdarch
Useful when transforming a architecture-less input file into an object file. In this
case the output architecture can be set to bfdarch. This option will be ignored
if the input file has a known bfdarch. You can access this binary data inside a
program by referencing the special symbols that are created by the conversion
process. These symbols are called _binary_objfile_start, _binary_objfile_end
and _binary_objfile_size. e.g. you can transform a picture file into an object
file and then access it in your code using these symbols.

-j sectionpattern

--only-section=sectionpattern
Copy only the indicated sections from the input file to the output file. This
option may be given more than once. Note that using this option inappropri-
ately may make the output file unusable. Wildcard characters are accepted in
sectionpattern.

-R sectionpattern

--remove-section=sectionpattern
Remove any section matching sectionpattern from the output file. This option
may be given more than once. Note that using this option inappropriately may
make the output file unusable. Wildcard characters are accepted in section-
pattern. Using both the ‘-j’ and ‘-R’ options together results in undefined
behaviour.

-S
--strip-all
Do not copy relocation and symbol information from the source file.

Chapter 4: objcopy 18

-8
--strip-debug
Do not copy debugging symbols or sections from the source file.

--strip-unneeded
Strip all symbols that are not needed for relocation processing.

-K symbolname

--keep-symbol=symbolname
When stripping symbols, keep symbol symbolname even if it would normally
be stripped. This option may be given more than once.

-N symbolname

--strip-symbol=symbolname
Do not copy symbol symbolname from the source file. This option may be
given more than once.

--strip-unneeded-symbol=symbolname
Do not copy symbol symbolname from the source file unless it is needed by a
relocation. This option may be given more than once.

-G symbolname

--keep-global-symbol=symbolname
Keep only symbol symbolname global. Make all other symbols local to the file,
so that they are not visible externally. This option may be given more than
once.

-—localize-hidden
In an ELF object, mark all symbols that have hidden or internal visibility as
local. This option applies on top of symbol-specific localization options such as
=L

-L symbolname

--localize-symbol=symbolname
Make symbol symbolname local to the file, so that it is not visible externally.
This option may be given more than once.

-W symbolname
--weaken-symbol=symbolname
Make symbol symbolname weak. This option may be given more than once.

--globalize-symbol=symbolname
Give symbol symbolname global scoping so that it is visible outside of the file
in which it is defined. This option may be given more than once.

-W

--wildcard
Permit regular expressions in symbolnames used in other command line options.
The question mark (?), asterisk (*), backslash (\) and square brackets ([])
operators can be used anywhere in the symbol name. If the first character of
the symbol name is the exclamation point (!) then the sense of the switch is
reversed for that symbol. For example:

Chapter 4: objcopy 19

-X

-w -W !'foo -W fox

would cause objcopy to weaken all symbols that start with “fo” except for the
symbol “foo”.

—--discard-all

-X

Do not copy non-global symbols from the source file.

——-discard-locals

-b byte

Do not copy compiler-generated local symbols. (These usually start with ‘L or

)

--byte=byte

If interleaving has been enabled via the ‘--interleave’ option then start the
range of bytes to keep at the byteth byte. byte can be in the range from 0 to
breadth-1, where breadth is the value given by the ‘-—~interleave’ option.

-i [breadth]
-—interleave[=breadth]

Only copy a range out of every breadth bytes. (Header data is not affected).
Select which byte in the range begins the copy with the ‘--byte’ option. Select
the width of the range with the ‘--interleave-width’ option.

This option is useful for creating files to program ROM. It is typically used with
an srec output target. Note that objcopy will complain if you do not specify
the ‘--byte’ option as well.

The default interleave breadth is 4, so with ‘--byte’ set to 0, objcopy would
copy the first byte out of every four bytes from the input to the output.

—-—-interleave-width=width

P

When used with the ‘--interleave’ option, copy width bytes at a time. The
start of the range of bytes to be copied is set by the ‘~-byte’ option, and the
extent of the range is set with the ‘~-interleave’ option.

The default value for this option is 1. The value of width plus the byte value
set by the ‘--byte’ option must not exceed the interleave breadth set by the
‘-—interleave’ option.

This option can be used to create images for two 16-bit flashes interleaved
in a 32-bit bus by passing ‘-b 0 -i 4 --interleave-width=2" and ‘-b 2
-i 4 --interleave-width=2" to two objcopy commands. If the input was
12345678’ then the outputs would be '1256” and ’3478’ respectively.

--preserve-dates

Set the access and modification dates of the output file to be the same as those
of the input file.

Chapter 4: objcopy 20

-D

-—enable-deterministic-archives
Operate in deterministic mode. When copying archive members and writing
the archive index, use zero for UIDs, GIDs, timestamps, and use consistent file
modes for all files.

If ‘binutils’ was configured with ‘--enable-deterministic-archives’, then
this mode is on by default. It can be disabled with the ‘-U’ option, below.

-U

--disable-deterministic-archives
Do not operate in deterministic mode. This is the inverse of the ‘-D’ option,
above: when copying archive members and writing the archive index, use their
actual UID, GID, timestamp, and file mode values.

¢

This is the default unless ‘binutils’ was configured with ‘--enable-deterministic-archives’.

--debugging
Convert debugging information, if possible. This is not the default because
only certain debugging formats are supported, and the conversion process can
be time consuming.

--gap-fill val
Fill gaps between sections with val. This operation applies to the load address
(LMA) of the sections. It is done by increasing the size of the section with the
lower address, and filling in the extra space created with val.

--pad-to address
Pad the output file up to the load address address. This is done by increasing
the size of the last section. The extra space is filled in with the value specified
by ‘--gap-£ill’ (default zero).

--set-start val
Set the start address of the new file to val. Not all object file formats support
setting the start address.

--change-start incr

--adjust-start incr
Change the start address by adding incr. Not all object file formats support
setting the start address.

--change-addresses incr

--adjust-vma incr
Change the VMA and LMA addresses of all sections, as well as the start address,
by adding incr. Some object file formats do not permit section addresses to be
changed arbitrarily. Note that this does not relocate the sections; if the program
expects sections to be loaded at a certain address, and this option is used to
change the sections such that they are loaded at a different address, the program
may fail.

--change-section-address sectionpattern{=,+,-}val

--adjust-section-vma sectionpattern{=,+,-}val
Set or change both the VMA address and the LMA address of any section
matching sectionpattern. If ‘=" is used, the section address is set to val. Other-

Chapter 4: objcopy 21

wise, val is added to or subtracted from the section address. See the comments
under ‘--change-addresses’, above. If sectionpattern does not match any sec-
tions in the input file, a warning will be issued, unless ‘~-no-change-warnings’
is used.

--change-section-1lma sectionpattern{=,+,-}val

Set or change the LMA address of any sections matching sectionpattern. The
LMA address is the address where the section will be loaded into memory at
program load time. Normally this is the same as the VMA address, which is
the address of the section at program run time, but on some systems, especially
those where a program is held in ROM, the two can be different. If ‘=’ is used,
the section address is set to val. Otherwise, val is added to or subtracted from
the section address. See the comments under ‘--change-addresses’, above. If
sectionpattern does not match any sections in the input file, a warning will be
issued, unless ‘-—no-change-warnings’ is used.

--change-section-vma sectionpattern{=,+,-}val

Set or change the VMA address of any section matching sectionpattern. The
VMA address is the address where the section will be located once the program
has started executing. Normally this is the same as the LMA address, which
is the address where the section will be loaded into memory, but on some
systems, especially those where a program is held in ROM, the two can be
different. If ‘=’ is used, the section address is set to val. Otherwise, val is
added to or subtracted from the section address. See the comments under
‘-—change-addresses’, above. If sectionpattern does not match any sections
in the input file, a warning will be issued, unless ‘--no-change-warnings’ is
used.

--change-warnings

--adjust-warnings
If ‘-—change-section-address’ or ‘-—change-section-1ma’ or
‘-—change-section-vma’ is used, and the section pattern does not match any
sections, issue a warning. This is the default.

--no-change-warnings

--no-adjust-warnings
Do not issue a warning if ‘--change-section-address’ or
‘-—adjust-section-lma’ or ‘--adjust-section-vma’ is used, even if
the section pattern does not match any sections.

--set-section-flags sectionpattern=flags
Set the flags for any sections matching sectionpattern. The flags argument is
a comma separated string of flag names. The recognized names are ‘alloc’,
‘contents’, ‘load’, ‘noload’, ‘readonly’, ‘code’, ‘data’, ‘rom’, ‘share’, and
‘debug’. You can set the ‘contents’ flag for a section which does not have
contents, but it is not meaningful to clear the ‘contents’ flag of a section
which does have contents—just remove the section instead. Not all flags are

meaningful for all object file formats.

Chapter 4: objcopy 22

--add-section sectionname=filename
Add a new section named sectionname while copying the file. The contents of
the new section are taken from the file filename. The size of the section will be
the size of the file. This option only works on file formats which can support
sections with arbitrary names.

--rename-section oldname=newname [,flags]
Rename a section from oldname to newname, optionally changing the section’s
flags to flags in the process. This has the advantage over usng a linker script
to perform the rename in that the output stays as an object file and does not
become a linked executable.

This option is particularly helpful when the input format is binary, since this
will always create a section called .data. If for example, you wanted instead
to create a section called .rodata containing binary data you could use the
following command line to achieve it:

objcopy -I binary -0 <output_format> -B <architecture> \

--rename-section .data=.rodata,alloc,load,readonly,data,contents \
<input_binary_file> <output_object_file>

--long-section-names {enable,disable,keep}

Controls the handling of long section names when processing COFF and PE-
COFF object formats. The default behaviour, ‘keep’, is to preserve long section
names if any are present in the input file. The ‘enable’ and ‘disable’ options
forcibly enable or disable the use of long section names in the output object;
when ‘disable’ is in effect, any long section names in the input object will be
truncated. The ‘enable’ option will only emit long section names if any are
present in the inputs; this is mostly the same as ‘keep’, but it is left undefined
whether the ‘enable’ option might force the creation of an empty string table
in the output file.

--change-leading-char
Some object file formats use special characters at the start of symbols. The
most common such character is underscore, which compilers often add before
every symbol. This option tells objcopy to change the leading character of every
symbol when it converts between object file formats. If the object file formats
use the same leading character, this option has no effect. Otherwise, it will add
a character, or remove a character, or change a character, as appropriate.

--remove-leading-char
If the first character of a global symbol is a special symbol leading character
used by the object file format, remove the character. The most common symbol
leading character is underscore. This option will remove a leading underscore
from all global symbols. This can be useful if you want to link together objects
of different file formats with different conventions for symbol names. This is
different from ‘--change-leading-char’ because it always changes the symbol
name when appropriate, regardless of the object file format of the output file.

Chapter 4: objcopy 23

--reverse-bytes=num

Reverse the bytes in a section with output contents. A section length must be
evenly divisible by the value given in order for the swap to be able to take place.
Reversing takes place before the interleaving is performed.

This option is used typically in generating ROM images for problematic target
systems. For example, on some target boards, the 32-bit words fetched from
8-bit ROMs are re-assembled in little-endian byte order regardless of the CPU
byte order. Depending on the programming model, the endianness of the ROM
may need to be modified.

Consider a simple file with a section containing the following eight bytes:
12345678.

Using ‘--reverse-bytes=2’ for the above example, the bytes in the output file
would be ordered 21436587.

Using ‘--reverse-bytes=4’ for the above example, the bytes in the output file
would be ordered 43218765.

4

By wusing ‘--reverse-bytes=2" for the above example, followed by
‘-—reverse-bytes=4’ on the output file, the bytes in the second output file
would be ordered 34127856.

--srec-len=ival

Meaningful only for srec output. Set the maximum length of the Srecords being
produced to ival. This length covers both address, data and crc fields.

—--srec-forceS3

Meaningful only for srec output. Avoid generation of S1/S2 records, creating
S3-only record format.

--redefine-sym old=new

Change the name of a symbol old, to new. This can be useful when one is
trying link two things together for which you have no source, and there are
name collisions.

--redefine-syms=filename

—--weaken

Apply ‘--redefine-sym’ to each symbol pair "old new" listed in the file file-
name. filename is simply a flat file, with one symbol pair per line. Line com-
ments may be introduced by the hash character. This option may be given
more than once.

Change all global symbols in the file to be weak. This can be useful when
building an object which will be linked against other objects using the ‘-R’
option to the linker. This option is only effective when using an object file
format which supports weak symbols.

--keep-symbols=filename

Apply ‘-—keep-symbol’ option to each symbol listed in the file filename. file-
name is simply a flat file, with one symbol name per line. Line comments may
be introduced by the hash character. This option may be given more than once.

Chapter 4: objcopy 24

--strip-symbols=filename
Apply ‘--strip-symbol’ option to each symbol listed in the file filename. file-
name is simply a flat file, with one symbol name per line. Line comments may
be introduced by the hash character. This option may be given more than once.

--strip-unneeded-symbols=filename
Apply ‘--strip-unneeded-symbol’ option to each symbol listed in the file file-
name. filename is simply a flat file, with one symbol name per line. Line
comments may be introduced by the hash character. This option may be given
more than once.

--keep-global-symbols=filename
Apply ‘--keep-global-symbol’ option to each symbol listed in the file file-
name. filename is simply a flat file, with one symbol name per line. Line
comments may be introduced by the hash character. This option may be given
more than once.

-—localize-symbols=filename
Apply ‘--localize-symbol’ option to each symbol listed in the file filename.
filename is simply a flat file, with one symbol name per line. Line comments
may be introduced by the hash character. This option may be given more than
once.

--globalize-symbols=filename
Apply ‘--globalize-symbol’ option to each symbol listed in the file filename.
filename is simply a flat file, with one symbol name per line. Line comments
may be introduced by the hash character. This option may be given more than
once.

--weaken-symbols=filename
Apply ‘--weaken-symbol’ option to each symbol listed in the file filename.
filename is simply a flat file, with one symbol name per line. Line comments
may be introduced by the hash character. This option may be given more than
once.

-—alt-machine-code=index
If the output architecture has alternate machine codes, use the indexth code
instead of the default one. This is useful in case a machine is assigned an
official code and the tool-chain adopts the new code, but other applications
still depend on the original code being used. For ELF based architectures if the
index alternative does not exist then the value is treated as an absolute number
to be stored in the e_machine field of the ELF header.

-—-writable-text
Mark the output text as writable. This option isn’t meaningful for all object
file formats.

--readonly-text
Make the output text write protected. This option isn’t meaningful for all
object file formats.

--pure Mark the output file as demand paged. This option isn’t meaningful for all
object file formats.

Chapter 4: objcopy 25

—-—impure Mark the output file as impure. This option isn’t meaningful for all object file
formats.

—-—-prefix—-symbols=string
Prefix all symbols in the output file with string.

--prefix-sections=string
Prefix all section names in the output file with string.

--prefix-alloc-sections=string
Prefix all the names of all allocated sections in the output file with string.

--add-gnu-debuglink=path-to-file
Creates a .gnu_debuglink section which contains a reference to path-to-file and
adds it to the output file.

--keep-file-symbols
When stripping a file, perhaps with ‘~-strip-debug’ or ‘~-strip-unneeded’,
retain any symbols specifying source file names, which would otherwise get
stripped.

¢

--only-keep-debug

Strip a file, removing contents of any sections that would not be stripped by
‘-—strip-debug’ and leaving the debugging sections intact. In ELF files, this
preserves all note sections in the output.

The intention is that this option will be wused in conjunction with
‘-—add-gnu-debuglink’ to create a two part executable. One a stripped
binary which will occupy less space in RAM and in a distribution and the
second a debugging information file which is only needed if debugging abilities
are required. The suggested procedure to create these files is as follows:

1. Link the executable as normal. Assuming that is is called foo then...

2. Run objcopy --only-keep-debug foo foo.dbg to create a file containing
the debugging info.

3. Run objcopy --strip-debug foo to create a stripped executable.
4. Run objcopy --add-gnu-debuglink=foo.dbg foo to add a link to the
debugging info into the stripped executable.

Note—the choice of .dbg as an extension for the debug info file is arbitrary.
Also the ——only-keep-debug step is optional. You could instead do this:

1. Link the executable as normal.

2. Copy foo to foo.full

3. Run objcopy --strip-debug foo

4. Run objcopy --add-gnu-debuglink=foo.full foo
i.e., the file pointed to by the ‘--add-gnu-debuglink’ can be the full executable.
It does not have to be a file created by the ‘--only-keep-debug’ switch.

Note—this switch is only intended for use on fully linked files. It does not make
sense to use it on object files where the debugging information may be incom-
plete. Besides the gnu_debuglink feature currently only supports the presence

Chapter 4: objcopy 26

of one filename containing debugging information, not multiple filenames on a
one-per-object-file basis.

--strip-dwo

Remove the contents of all DWARF .dwo sections, leaving the remaining de-
bugging sections and all symbols intact. This option is intended for use by the
compiler as part of the ‘~gsplit-dwarf’ option, which splits debug information
between the .o file and a separate .dwo file. The compiler generates all debug
information in the same file, then uses the ‘--extract-dwo’ option to copy the
.dwo sections to the .dwo file, then the ‘--strip-dwo’ option to remove those
sections from the original .o file.

--extract-dwo
Extract the contents of all DWARF .dwo sections. See the ‘--strip-dwo’ option
for more information.

--file-alignment num
Specify the file alignment. Sections in the file will always begin at file offsets
which are multiples of this number. This defaults to 512. [This option is specific
to PE targets.]

--heap reserve

—--heap reserve,commit
Specify the number of bytes of memory to reserve (and optionally commit) to
be used as heap for this program. [This option is specific to PE targets.]

--image-base value
Use value as the base address of your program or dll. This is the lowest memory
location that will be used when your program or dll is loaded. To reduce the
need to relocate and improve performance of your dlls, each should have a
unique base address and not overlap any other dlls. The default is 0x400000 for
executables, and 0x10000000 for dlls. [This option is specific to PE targets.]

-—-section-alignment num
Sets the section alignment. Sections in memory will always begin at addresses
which are a multiple of this number. Defaults to 0x1000. [This option is specific
to PE targets.]

-—-stack reserve

—--stack reserve,commit
Specify the number of bytes of memory to reserve (and optionally commit) to
be used as stack for this program. [This option is specific to PE targets.]

--subsystem which

—-—-subsystem which :major

—--subsystem which:major.minor
Specifies the subsystem under which your program will execute. The legal
values for which are native, windows, console, posix, efi-app, efi-bsd,
efi-rtd, sal-rtd, and xbox. You may optionally set the subsystem version
also. Numeric values are also accepted for which. [This option is specific to PE
targets.]

Chapter 4:

objcopy 27

-—extract-symbol

Keep the file’s section flags and symbols but remove all section data. Specifi-
cally, the option:

e removes the contents of all sections;
e sets the size of every section to zero; and
e sets the file’s start address to zero.

This option is used to build a ‘.sym’ file for a VxWorks kernel. It can also be
a useful way of reducing the size of a ‘--just-symbols’ linker input file.

--compress-debug-sections

Compress DWARF debug sections using zlib.

--decompress—-debug-sections

-V
—--version

-V
—--verbose

--help

—--info

Decompress DWARF debug sections using zlib.

Show the version number of objcopy.

Verbose output: list all object files modified. In the case of archives, ‘objcopy
-V’ lists all members of the archive.

Show a summary of the options to objcopy.

Display a list showing all architectures and object formats available.

Chapter 5: objdump 28

5 objdump

objdump [‘-a’|‘--archive-headers’]
[‘-b’ bfdname | ‘--target=bfdname’]

[¢-C’| ‘--demangle’ [=style]]

[‘-d’ | ‘--disassemble’]

[‘-D’| ‘--disassemble-all’]

[¢-z’| ‘--disassemble-zeroes’]
[‘-EB’l‘—EL’|‘——endian=’{big | little }]

[‘-f’|‘--file-headers’]
[‘“-F’|‘--file-offsets’]
[‘--file-start-context’]
[‘-g’ | ‘--debugging’]

[‘-e’| ‘--debugging-tags’]
[“-h’|‘--section-headers’ | ‘--headers’]
[¢-i’ | ¢“--info’]

[‘-j’ section|‘--section=’section]
[-1’ | ‘--1line-numbers’]
[-8’ | ‘--source’]

[‘-m’ machine|‘--architecture=’machine]
[-M’ options|‘--disassembler-options=’options]
[“-p’| ‘--private-headers’]

[“-P’ options|‘--private=’options]
[“-r’|¢--reloc’]

[“-R’| ‘“--dynamic-reloc’]
[‘-s’|¢--full-contents’]

[‘-W[1lLiaprmfFsoRt]’ |

‘--dwarf’ [=rawline,=decodedline,=info,=abbrev,=pubnames,=aranges,=macro,=frames,=frames-
interp,=str,=loc,=Ranges,=pubtypes,=trace_info,=trace_abbrev,=trace_aranges,=gdb_index]]

[‘“-G’ | ‘--stabs’]

[‘-t’|‘--syms’]
[‘-T’ | ‘--dynamic-syms’]
[‘-x’|‘--all-headers’]
[“-w’|‘--wide’]

[‘--start-address=’address]
[¢--stop-address=’address]
[“--prefix-addresses’]
[¢--[no-]show-raw-insn’]
[‘--adjust-vma=’offset]
[“--special-syms’]
[“--prefix=’prefix]
[“--prefix-strip=’levell]
[‘--insn-width=’width]
[¢-V’|‘--version’]

[(_H) | l__he1P7]

objfile...

objdump displays information about one or more object files. The options control what
particular information to display. This information is mostly useful to programmers who are
working on the compilation tools, as opposed to programmers who just want their program
to compile and work.

objfile. . . are the object files to be examined. When you specify archives, objdump shows
information on each of the member object files.

The long and short forms of options, shown here as alternatives, are equivalent. At least
one option from the list ‘-a,-d4,-D,-e,-f,-g,-G,-h,-H,-p,-P,-r,-R,-s,-S,-t,-T,-V,-x’
must be given.

Chapter 5: objdump 29

-a

--archive-header
If any of the objfile files are archives, display the archive header information
(in a format similar to ‘1s -1’). Besides the information you could list with ‘ar
tv’, ‘objdump -a’ shows the object file format of each archive member.

--adjust-vma=offset
When dumping information, first add offset to all the section addresses. This
is useful if the section addresses do not correspond to the symbol table, which
can happen when putting sections at particular addresses when using a format
which can not represent section addresses, such as a.out.

-b bfdname

-—target=bfdname
Specify that the object-code format for the object files is bfdname. This option
may not be necessary; objdump can automatically recognize many formats.

For example,
objdump -b oasys -m vax -h fu.o

displays summary information from the section headers (‘-h’) of ‘fu.o’, which
is explicitly identified (‘-m’) as a VAX object file in the format produced by
Oasys compilers. You can list the formats available with the ‘=i’ option. See
Section 19.1 [Target Selection], page 71, for more information.

-C

--demangle[=style]
Decode (demangle) low-level symbol names into user-level names. Besides re-
moving any initial underscore prepended by the system, this makes C++ func-
tion names readable. Different compilers have different mangling styles. The
optional demangling style argument can be used to choose an appropriate de-
mangling style for your compiler. See Chapter 10 [c++filt], page 46, for more
information on demangling.

-8

--debugging
Display debugging information. This attempts to parse STABS and IEEE de-
bugging format information stored in the file and print it out using a C like
syntax. If neither of these formats are found this option falls back on the ‘-W’
option to print any DWARF information in the file.

-e

--debugging-tags
Like ‘-g’, but the information is generated in a format compatible with ctags
tool.

-d

-—disassemble
Display the assembler mnemonics for the machine instructions from objfile.
This option only disassembles those sections which are expected to contain
instructions.

Chapter 5: objdump 30

-D

--disassemble-all
Like ‘-d’, but disassemble the contents of all sections, not just those expected
to contain instructions.

If the target is an ARM architecture this switch also has the effect of forcing
the disassembler to decode pieces of data found in code sections as if they were
instructions.

--prefix-addresses
When disassembling, print the complete address on each line. This is the older
disassembly format.

-EB

-EL

--endian={big|little}
Specify the endianness of the object files. This only affects disassembly. This
can be useful when disassembling a file format which does not describe endian-
ness information, such as S-records.

-f
-—file-headers
Display summary information from the overall header of each of the objfile files.

-F

-—file-offsets
When disassembling sections, whenever a symbol is displayed, also display the
file offset of the region of data that is about to be dumped. If zeroes are being
skipped, then when disassembly resumes, tell the user how many zeroes were
skipped and the file offset of the location from where the disassembly resumes.
When dumping sections, display the file offset of the location from where the
dump starts.

--file-start-context
Specify that when displaying interlisted source code/disassembly (assumes ‘-S’)
from a file that has not yet been displayed, extend the context to the start of
the file.

-h
--section-headers
—--headers
Display summary information from the section headers of the object file.

File segments may be relocated to nonstandard addresses, for example by using
the ‘-Ttext’, ‘-Tdata’, or ‘-Tbss’ options to 1d. However, some object file
formats, such as a.out, do not store the starting address of the file segments.
In those situations, although 1d relocates the sections correctly, using ‘objdump
-h’ to list the file section headers cannot show the correct addresses. Instead,
it shows the usual addresses, which are implicit for the target.

--help Print a summary of the options to objdump and exit.

Chapter 5: objdump 31

-i

--info Display a list showing all architectures and object formats available for specifi-
cation with ‘-b’ or ‘-m’.

-j name

--section=name
Display information only for section name.

-1

-—line-numbers
Label the display (using debugging information) with the filename and source
line numbers corresponding to the object code or relocs shown. Only useful
with ‘-d’, ‘-D’, or ‘-r’.

-m machine

—-—architecture=machine
Specify the architecture to use when disassembling object files. This can be
useful when disassembling object files which do not describe architecture infor-
mation, such as S-records. You can list the available architectures with the ‘=i’
option.
If the target is an ARM architecture then this switch has an additional effect.
It restricts the disassembly to only those instructions supported by the archi-
tecture specified by machine. If it is necessary to use this switch because the
input file does not contain any architecture information, but it is also desired
to disassemble all the instructions use ‘-marm’.

-M options

--disassembler-options=options
Pass target specific information to the disassembler. Only supported on some
targets. If it is necessary to specify more than one disassembler option then
multiple ‘-M’ options can be used or can be placed together into a comma
separated list.
If the target is an ARM architecture then this switch can be used to select which
register name set is used during disassembler. Specifying ‘-M reg-names-std’
(the default) will select the register names as used in ARM'’s instruction set
documentation, but with register 13 called ’sp’, register 14 called I’ and register
15 called "pc’. Specifying ‘-M reg-names-apcs’ will select the name set used by
the ARM Procedure Call Standard, whilst specifying ‘-M reg-names-raw’ will
just use ‘r’ followed by the register number.

There are also two variants on the APCS register naming scheme enabled
by ‘-M reg-names-atpcs’ and ‘-M reg-names-special-atpcs’ which use the
ARM/Thumb Procedure Call Standard naming conventions. (Either with the
normal register names or the special register names).

This option can also be used for ARM architectures to force the disassem-
bler to interpret all instructions as Thumb instructions by using the switch
‘--disassembler-options=force-thumb’. This can be useful when attempt-
ing to disassemble thumb code produced by other compilers.

For the x86, some of the options duplicate functions of the ‘-m’ switch, but allow
finer grained control. Multiple selections from the following may be specified

Chapter 5: objdump 32

as a comma separated string. ‘x86-64’, ‘1386’ and ‘18086’ select disassem-
bly for the given architecture. ‘intel’ and ‘att’ select between intel syntax
mode and AT&T syntax mode. ‘intel-mnemonic’ and ‘att-mnemonic’ select
between intel mnemonic mode and AT&T mnemonic mode. ‘intel-mnemonic’
implies ‘intel’ and ‘att-mnemonic’ implies ‘att’. ‘addr64’, ‘addr32’, ‘addr16’,
‘data32’ and ‘datal6’ specify the default address size and operand size. These
four options will be overridden if ‘x86-64’, ‘1386’ or ‘18086’ appear later in the
option string. Lastly, ‘suffix’, when in AT&T mode, instructs the disassem-
bler to print a mnemonic suffix even when the suffix could be inferred by the
operands.

For PowerPC, ‘booke’ controls the disassembly of BookE instructions. ‘32’ and
‘64’ select PowerPC and PowerPC64 disassembly, respectively. ‘e300’ selects
disassembly for the e300 family. ‘440’ selects disassembly for the PowerPC 440.
‘ppeps’ selects disassembly for the paired single instructions of the PPC750CL.

For MIPS, this option controls the printing of instruction mnemonic names
and register names in disassembled instructions. Multiple selections from the
following may be specified as a comma separated string, and invalid options are
ignored:

no-aliases
Print the ’raw’ instruction mnemonic instead of some pseudo in-
struction mnemonic. l.e., print ’daddu’ or ’or’ instead of 'move’,
’sll” instead of 'nop’, etc.

virt Disassemble the virtualization ASE instructions.

gpr-names=ABI
Print GPR (general-purpose register) names as appropriate for the
specified ABI. By default, GPR names are selected according to
the ABI of the binary being disassembled.

fpr-names=ABI
Print FPR (floating-point register) names as appropriate for the
specified ABI. By default, FPR numbers are printed rather than
names.

cpO-names=ARCH
Print CPO (system control coprocessor; coprocessor 0) register
names as appropriate for the CPU or architecture specified by
ARCH. By default, CP0 register names are selected according to
the architecture and CPU of the binary being disassembled.

hwr-names=ARCH
Print HWR (hardware register, used by the rdhwr instruction)
names as appropriate for the CPU or architecture specified by
ARCH. By default, HWR names are selected according to the ar-
chitecture and CPU of the binary being disassembled.

reg-names=ABI
Print GPR and FPR names as appropriate for the selected ABI.

Chapter 5: objdump 33

P

reg-names=ARCH
Print CPU-specific register names (CPO register and HWR names)
as appropriate for the selected CPU or architecture.

For any of the options listed above, ABI or ARCH may be specified as ‘numeric’
to have numbers printed rather than names, for the selected types of registers.
You can list the available values of ABI and ARCH using the ‘~-help’ option.

For VAX, you can specify function entry addresses with ‘-M entry:0xf00ba’.
You can use this multiple times to properly disassemble VAX binary files that
don’t contain symbol tables (like ROM dumps). In these cases, the function
entry mask would otherwise be decoded as VAX instructions, which would
probably lead the rest of the function being wrongly disassembled.

--private-headers

-P options

Print information that is specific to the object file format. The exact informa-
tion printed depends upon the object file format. For some object file formats,
no additional information is printed.

--private=options

-r
--reloc

-R

Print information that is specific to the object file format. The argument op-
tions is a comma separated list that depends on the format (the lists of options
is displayed with the help).

For XCOFF, the available options are: ‘header’, ‘aout’, ‘sections’, ‘syms’,
‘relocs’, ‘lineno’, ‘loader’, ‘except’, ‘typchk’, ‘traceback’, ‘toc’ and
‘ldinfo’.

Print the relocation entries of the file. If used with ‘-=d’ or ‘-D’, the relocations
are printed interspersed with the disassembly.

-—dynamic-reloc

-S

Print the dynamic relocation entries of the file. This is only meaningful for
dynamic objects, such as certain types of shared libraries. As for ‘-r’, if used
with ‘-=d’ or ‘-D’, the relocations are printed interspersed with the disassembly.

—-—full-contents

-3

——source

Display the full contents of any sections requested. By default all non-empty
sections are displayed.

Display source code intermixed with disassembly, if possible. Implies ‘-d’.

--prefix=prefix

Specify prefix to add to the absolute paths when used with ‘-S’.

——prefix-strip=level

Indicate how many initial directory names to strip off the hardwired absolute
paths. It has no effect without ‘--prefix="prefix.

Chapter 5: objdump 34

-—show-raw-insn
When disassembling instructions, print the instruction in hex as well as in
symbolic form. This is the default except when ‘--prefix-addresses’ is used.

-—-no-show-raw-insn
When disassembling instructions, do not print the instruction bytes. This is
the default when ‘--prefix-addresses’ is used.

-—insn-width=width
Display width bytes on a single line when disassembling instructions.

-W[1lLiaprmfFsoRt]
—--dwarf [=rawline,=decodedline,=info,=abbrev,=pubnames,=aranges,=macro,=frames,=frames-inter
info,=trace_abbrev,=trace_aranges,=gdb_index]

Displays the contents of the debug sections in the file, if any are present. If one

of the optional letters or words follows the switch then only data found in those

specific sections will be dumped.

Note that there is no single letter option to display the content of trace sections
or .gdb_index.

Note: the output from the ‘=info’ option can also be affected by the options

‘-—dwarf-depth’, the ‘-—dwarf-start’ and the ‘--dwarf-check’.

--dwarf-depth=n
Limit the dump of the .debug_info section to n children. This is only useful
with ‘-—dwarf=info’. The default is to print all DIEs; the special value 0 for n
will also have this effect.

With a non-zero value for n, DIEs at or deeper than n levels will not be printed.
The range for n is zero-based.

--dwarf-start=n
Print only DIEs beginning with the DIE numbered n. This is only useful with
‘--dwarf=info’.
If specified, this option will suppress printing of any header information and all
DIEs before the DIE numbered n. Only siblings and children of the specified
DIE will be printed.

This can be used in conjunction with ‘~-dwarf-depth’.

-—dwarf-check
Enable additional checks for consistency of Dwarf information.

-G

--stabs Display the full contents of any sections requested. Display the contents of the
.stab and .stab.index and .stab.excl sections from an ELF file. This is only
useful on systems (such as Solaris 2.0) in which .stab debugging symbol-table
entries are carried in an ELF section. In most other file formats, debugging
symbol-table entries are interleaved with linkage symbols, and are visible in the
‘-—syms’ output.

--start-address=address
Start displaying data at the specified address. This affects the output of the
‘-d’, ‘-r’ and ‘-s’ options.

Chapter 5: objdump 35

--stop-address=address

—-syms

Stop displaying data at the specified address. This affects the output of the
‘-d’, ‘-r’ and ‘-s’ options.

Print the symbol table entries of the file. This is similar to the information
provided by the ‘nm’ program, although the display format is different. The
format of the output depends upon the format of the file being dumped, but
there are two main types. One looks like this:

[41(sec 3)(f1 0x00)(ty 0)(scl 3) (nx 1) 0x00000000 .bss

[6](sec 1)(f1 0x00)(ty 0)(scl 2) (nx 0) 0x00000000 fred
where the number inside the square brackets is the number of the entry in the
symbol table, the sec number is the section number, the fl value are the symbol’s
flag bits, the ty number is the symbol’s type, the scl number is the symbol’s
storage class and the nx value is the number of auxilary entries associated with
the symbol. The last two fields are the symbol’s value and its name.

The other common output format, usually seen with ELF based files, looks like
this:

00000000 1 d .bss 00000000 .bss

00000000 g .text 00000000 fred
Here the first number is the symbol’s value (sometimes refered to as its address).
The next field is actually a set of characters and spaces indicating the flag bits
that are set on the symbol. These characters are described below. Next is the
section with which the symbol is associated or *ABS* if the section is absolute
(ie not connected with any section), or *UND* if the section is referenced in
the file being dumped, but not defined there.

After the section name comes another field, a number, which for common sym-
bols is the alignment and for other symbol is the size. Finally the symbol’s
name is displayed.

The flag characters are divided into 7 groups as follows:
1
g
u
! The symbol is a local (1), global (g), unique global (u), neither
global nor local (a space) or both global and local (!). A symbol
can be neither local or global for a variety of reasons, e.g., because
it is used for debugging, but it is probably an indication of a bug if
it is ever both local and global. Unique global symbols are a GNU
extension to the standard set of ELF symbol bindings. For such a

symbol the dynamic linker will make sure that in the entire process
there is just one symbol with this name and type in use.

W The symbol is weak (w) or strong (a space).

C The symbol denotes a constructor (C) or an ordinary symbol (a
space).

Chapter 5: objdump 36

W The symbol is a warning (W) or a normal symbol (a space). A
warning symbol’s name is a message to be displayed if the symbol
following the warning symbol is ever referenced.

I

i The symbol is an indirect reference to another symbol (I), a function
to be evaluated during reloc processing (i) or a normal symbol (a
space).

d

D The symbol is a debugging symbol (d) or a dynamic symbol (D) or
a normal symbol (a space).

F

f

0 The symbol is the name of a function (F) or a file (f) or an object

(O) or just a normal symbol (a space).

-T

--dynamic-syms
Print the dynamic symbol table entries of the file. This is only meaningful for
dynamic objects, such as certain types of shared libraries. This is similar to the
information provided by the ‘nm’ program when given the ‘-D’ (‘--dynamic’)
option.

--special-syms
When displaying symbols include those which the target considers to be special
in some way and which would not normally be of interest to the user.

-V
--version
Print the version number of objdump and exit.

-X

-—all-headers
Display all available header information, including the symbol table and re-
location entries. Using ‘-x’ is equivalent to specifying all of ‘-a -f -h -p -r

-t

-w

--wide Format some lines for output devices that have more than 80 columns. Also do
not truncate symbol names when they are displayed.

-z

--disassemble-zeroes
Normally the disassembly output will skip blocks of zeroes. This option directs
the disassembler to disassemble those blocks, just like any other data.

Chapter 6: ranlib 37

6 ranlib

ranlib [‘--plugin’ name] [‘-DhHvVt’] archive

ranlib generates an index to the contents of an archive and stores it in the archive. The
index lists each symbol defined by a member of an archive that is a relocatable object file.

You may use ‘nm -s’ or ‘nm ——-print-armap’ to list this index.

An archive with such an index speeds up linking to the library and allows routines in
the library to call each other without regard to their placement in the archive.

The GNU ranlib program is another form of GNU ar; running ranlib is completely
equivalent to executing ‘ar -s’. See Chapter 1 [ar], page 2.

-h

-H

--help Show usage information for ranlib.

-V

-V

--version
Show the version number of ranlib.

-D Operate in deterministic mode. The symbol map archive member’s header will
show zero for the UID, GID, and timestamp. When this option is used, multiple
runs will produce identical output files.

If ‘binutils’ was configured with ‘--enable-deterministic-archives’, then
this mode is on by default. It can be disabled with the ‘-U’ option, described
below.

-t Update the timestamp of the symbol map of an archive.

-U Do not operate in deterministic mode. This is the inverse of the ‘-D’ option,
above: the archive index will get actual UID, GID, timestamp, and file mode
values.

If ‘binutils’ was configured without ‘--enable-deterministic-archives’,

then this mode is on by default.

Chapter 7: size 38

7 size

size [‘-A’|‘-B’|‘--format=’compatibility]
[“--help’]
[¢-d’| ‘-0’ | ‘-x’| ‘“--radix=’number]
[“--common’]
[“-t’ | ‘--totals’]
[“--target=’bfdname] [‘-V’|‘--version’]
[objfile...]
The GNU size utility lists the section sizes—and the total size—for each of the object
or archive files objfile in its argument list. By default, one line of output is generated for

each object file or each module in an archive.

objfile. . . are the object files to be examined. If none are specified, the file a.out will
be used.

The command line options have the following meanings:

-A

-B

--format=compatibility
Using one of these options, you can choose whether the output from GNU size
resembles output from System V size (using ‘-A’, or ‘--format=sysv’), or
Ber