Using the GNU Compiler Collection

Richard M. Stallman

Last updated 20 April 2002

for GCC 3.1

Copyright (© 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002
Free Software Foundation, Inc.

For GCC Version 3.1

Published by the Free Software Foundation
59 Temple Place—Suite 330

Boston, MA 02111-1307, USA

Last printed April, 1998.

Printed copies are available for $50 each.

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.1 or any later version published by the
Free Software Foundation; with the Invariant Sections being “GNU General Public License”,
the Front-Cover texts being (a) (see below), and with the Back-Cover Texts being (b) (see
below). A copy of the license is included in the section entitled “GNU Free Documentation
License”.

(a) The FSF’s Front-Cover Text is:
A GNU Manual
(b) The FSEF’s Back-Cover Text is:

You have freedom to copy and modify this GNU Manual, like GNU software. Copies
published by the Free Software Foundation raise funds for GNU development.

Short Contents

Introduction . v v v v v v vt oo e e s s s e eeeeeeososssssoonees 1
1 Compile C, C++, Objective-C, Ada, Fortran, or Java 3
2 Language Standards Supported by GCC)
3 GCC Command OptiOnS « e v v oo s v o v vvvveoeooosssens 7
4 C Implementation-defined behavior «ooeeeeeee.n.. 151
5 Extensions to the C Language Family 155
6 Extensions to the C++ Language . . v v v v v v v v v oo ann 249
7 GNU Objective-C runtime features.ooovuuen... 261
8 gcov: a Test Coverage Programovvvvevnenn. 267
9 Known Causes of Trouble with GCC 273
10 Reporting Bugs e e e v v v v vt v e v i i neeeeeeeennens 293
11 How To Get Help with GCC oo viiiiin... 299
12 Contributing to GCC Development + 301
13 UsingGCCon VMS. ...ttt iiiiiiniiiieennns 303
Funding Free Softwarecc0vviieiiieennnn. 309
The GNU Project and GNU/Linux. .« e v v v v v e v veveenenn. 311
GNU GENERAL PUBLICLICENSE . . o o v vt e e v v e e e e e 313
GNU Free Documentation License « « v v v v v v v v v v e v v ennnn. 321
Contributors to GCC . v v v vttt ettt i i eeeennnns 329
Option IndexX e v v v oo oot ettt i eeeeeseoeeneaaansns 337

1

Using the GNU Compiler Collection (GCC)

Table of Contents

Introduction..........c.c.oiiiieeeennnn. 1

1 Compile C, C++, Objective-C, Ada, Fortran, or
Java e e e e e 3

2 Language Standards Supported by GCC 5

3 GCC Command Options 7
3.1 Option SUMMATYottt e 7
3.2 Options Controlling the Kind of Output 16
3.3 Compiling C++ Programscoiiiii.... 19
3.4 Options Controlling C Dialect........................... 19
3.5 Options Controlling C++ Dialect......................... 24
3.6 Options Controlling Objective-C Dialect 30
3.7 Options to Control Diagnostic Messages Formatting 31
3.8 Options to Request or Suppress Warnings................ 31
3.9 Options for Debugging Your Program or GCC............ 43
3.10 Options That Control Optimization 50
3.11 Options Controlling the Preprocessor 61
3.12 Passing Options to the Assembler 68
3.13 Options for Linking 68
3.14 Options for Directory Search........................... 71
3.15 Specifying subprocesses and the switches to pass to them

... 73

3.16 Specifying Target Machine and Compiler Version 79
3.17 Hardware Models and Configurations................... 80
3.17.1 M680x0 Options. ..., 80

3.17.2 M68hclx Options.coooviiineiiin... 82

3.17.3 VAX Options ..., 83

3174 SPARC Options.............ooiiiiiinnnea .. 83

3.17.5 Convex Optionscovviiiiiinen... 86

3.17.6 AMD29K Optionscooveiiinenenn.... 87

3.17.7 ARM Options........ ..o, 89

3.17.8 MNI10200 Optionsccovvvenenenn... 93

3.17.9 MN10300 Optionsc.coiinneeeennn. 93
3.17.10 M32R/D Options. ..., 94
3.17.11 MS88K Optionsovvveiineiiea., 95
3.17.12 IBM RS/6000 and PowerPC Options.......... 98
3.17.13 IBM RT Options ..., 105
3.17.14 MIPS Options.cooviieeenn ... 106
3.17.15 Intel 386 and AMD x86-64 Options 111

3.17.16 HPPA Options 116

iii

iv Using the GNU Compiler Collection (GCC)
3.17.17 Intel 960 Options. ..., 117
3.17.18 DEC Alpha Options 118
3.17.19 DEC Alpha/VMS Options 123
3.17.20 Clipper Options...........c.ooviiinin... 123
3.17.21 H8/300 Optionsccoviuneeennn... 123
3.17.22 SHODHONS . ..o 124
3.17.23 Options for System V....................... 125
3.17.24 TMS320C3x/C4x Options. 125
3.17.25 V850 Optionsovvviiiinnea 127
3.17.26 ARC Optionscoviiiiiiiinnno .. 128
3.17.27 NS32K Optionscoviiiinein... 128
3.17.28 AVR Options 130
3.17.29 MCore Options.ccoviviiinen. .. 131
3.17.30 TA-64 Options.........ooiiinnneenena.. 132
3.17.31 D30V Options.......ccovveeeeeiiinnn .. 133
3.17.32 S/390 and zSeries Options 133
3.17.33 CRISOptions..........ccooviiiiieiiina... 134
3.17.34 MMIX Options.oovviineiinn .. 136
3.17.35 PDP-11 Options.........coveeviiiniiinn. .. 137
3.17.36 Xstormyl6 Options......................... 138
3.17.37 Xtensa Optionsccovviinoao... 138

3.18 Options for Code Generation Conventions.............. 140
3.19 Environment Variables Affecting GCC................. 145
3.20 Running Protoize L 148
4 C Implementation-defined behavior....... 151
4.1 Translation......... ... o i 151
4.2 Environment............... .. 151
4.3 Identifierso o 151
4.4 CharacterS.oou et 151
4.5 INtegers ..ot 152
4.6 Floating point 152
4.7 Arrays and pointers...............oo i, 153
4.8 Hints.o 153
4.9 Structures, unions, enumerations, and bit-fields.......... 153
4.10 Qualifiers.o 153
4.11 Preprocessing directives 153
4.12 Library functions. ... 154
4.13 Architecture........ ... 154
4.14 Locale-specific behavior............................... 154

5 Extensions to the C Language Family..... 155

5.1 Statements and Declarations in Expressions............. 155
5.2 Locally Declared Labels 156
5.3 Labelsas Values 157
5.4 Nested Functions. 158
5.5 Constructing Function Calls 159
5.6 Naming an Expression’s Type.......................... 160
5.7 Referring to a Type with typeof 161
5.8 Generalized Livalues 161
5.9 Conditionals with Omitted Operands................... 162
5.10 Double-Word Integers 163
5.11 Complex Numberso, 163
512 Hex Floats ... 164
5.13 Arrays of Length Zero................................ 164
5.14 Arrays of Variable Length 165
5.15 Macros with a Variable Number of Arguments.......... 166
5.16 Slightly Looser Rules for Escaped Newlines 167
5.17 String Literals with Embedded Newlines 167
5.18 Non-Lvalue Arrays May Have Subscripts............... 168
5.19 Arithmetic on void- and Function-Pointers............. 168
5.20 Non-Constant Initializers 168
5.21 Compound Literals.............. 168
5.22 Designated Initializers.............. 169
523 Case Ranges............... it 171
5.24 Casttoa Union Type ..., 171
5.25 Mixed Declarations and Code 171
5.26 Declaring Attributes of Functions 172
5.27 Attribute Syntax............ . 179
5.28 Prototypes and Old-Style Function Definitions 182
5.29 C++ Style Comments ..., 183
5.30 Dollar Signs in Identifier Names....................... 183
5.31 The Character in Constants...................... 183
5.32 Inquiring on Alignment of Types or Variables 183
5.33 Specifying Attributes of Variables 184
5.34 Specifying Attributes of Types........................ 188
5.35 An Inline Function is As Fast As a Macro.............. 191
5.36 Assembler Instructions with C Expression Operands 193

5.36.1 1386 floating point asm operands.............. 197
5.37 Constraints for asm Operands 198

5.37.1 Simple Constraints 198

5.37.2 Multiple Alternative Constraints.............. 200

5.37.3 Constraint Modifier Characters............... 201

5.37.4 Constraints for Particular Machines........... 201
5.38 Controlling Names Used in Assembler Code............ 210
5.39 Variables in Specified Registers........................ 211

5.39.1 Defining Global Register Variables............ 211

5.39.2 Specifying Registers for Local Variables 212

5.40 Alternate Keywords.................... 213

vi Using the GNU Compiler Collection (GCC)

5.41 Incomplete enum Types......... ..., 214
5.42 Function Names as Strings............................ 214
5.43 Getting the Return or Frame Address of a Function 215
5.44 Using vector instructions through built-in functions. 216
5.45 Other built-in functions provided by GCC 217
5.46 Built-in Functions Specific to Particular Target Machines
.. 221
5.46.1 X86 Built-in Functions....................... 221
5.46.2 PowerPC AltiVec Built-in Functions 225
5.47 Pragmas Accepted by GCC........................... 247
5471 ARM Pragmas...................... ..., 247
5.47.2 Darwin Pragmas 247
5.47.3 Solaris Pragmas 247
5.47.4 Trub64d Pragmas..............cooiiiiii... 248
5.48 Unnamed struct/union fields within structs/unions. 248
6 Extensions to the C++ Language.......... 249
6.1 Minimum and Maximum Operators in C++.............. 249
6.2 When is a Volatile Object Accessed?.................... 249
6.3 Restricting Pointer Aliasing............................ 250
6.4 Vague Linkage 251
6.5 Declarations and Definitions in One Header 252
6.6 Where’s the Template? 254
6.7 Extracting the function pointer from a bound pointer to
member function 256
6.8 C++-Specific Variable, Function, and Type Attributes.... 257
6.9 Java Exceptions.................oiiiiiiiiii... 257
6.10 Deprecated Features................, 258
6.11 Backwards Compatibility 259
7 GNU Objective-C runtime features....... 261
7.1 +load: Executing code before main..................... 261
7.1.1 What you can and what you cannot do in +load
... 262
7.2 Typeencoding..........couuiiiiiiiiiiiniinnen.. 263
7.3 Garbage Collection........... 264
7.4 Constant string objects.......... 265
7.5 compatibility_alias............. 266
8 gcov: a Test Coverage Program........... 267
8.1 Introduction to gcov il 267
8.2 Invoking gcov........ ..o 268
8.3 Using gcov with GCC Optimization 270

8.4 Brief description of gcov datafiles...................... 271

9 Known Causes of Trouble with GCC...... 273

9.1 Actual Bugs We Haven’t Fixed Yet..................... 273

9.2 Cross-Compiler Problems 273

9.3 Interoperation, 274

9.4 Problems Compiling Certain Programs.................. 277

9.5 Incompatibilities of GCC 278

9.6 Fixed Header Files 281

9.7 Standard Libraries i 282

9.8 Disappointments and Misunderstandings................ 282

9.9 Common Misunderstandings with GNU C++ 284

9.9.1 Declare and Define Static Members 284

9.9.2 Temporaries May Vanish Before You Expect.... 284

9.9.3 TImplicit Copy-Assignment for Virtual Bases 285

9.10 Caveats of using protoize...............ooiiiinn... 286

9.11 Certain Changes We Don’t Want to Make.............. 287

9.12 Warning Messages and Error Messages................. 290

10 Reporting Bugs 293

10.1 Have You Found a Bug?............... 293

10.2 Where to Report Bugs 294

10.3 How to Report Bugs 294

10.4 The gecbug script ... oov e 297

11 How To Get Help with GCC............ 299

12 Contributing to GCC Development...... 301

13 Using GCCon VMS.................... 303

13.1 Include Filesand VMS 303

13.2 Global Declarations and VMS......................... 304

13.3 Other VMS ISsues.oviiinieinana.. 306

Funding Free Software 309

The GNU Project and GNU/Linux 311

GNU GENERAL PUBLIC LICENSE......... 313

Preamble. 313
TERMS AND CONDITIONS FOR COPYING,

DISTRIBUTION AND MODIFICATION 314

How to Apply These Terms to Your New Programs........... 318

GNU Free Documentation License........... 321

ADDENDUM: How to use this License for your documents. ... 327

vii

viii Using the GNU Compiler Collection (GCC)
Contributors to GCC

Introduction 1

Introduction

This manual documents how to use the GNU compilers, as well as their features and
incompatibilities, and how to report bugs. It corresponds to GCC version 3.1. The internals
of the GNU compilers, including how to port them to new targets and some information
about how to write front ends for new languages, are documented in a separate manual.
See section “Introduction” in GNU Compiler Collection (GCC) Internals.

Using the GNU Compiler Collection (GCC)

Chapter 1: Compile C, C++, Objective-C, Ada, Fortran, or Java 3

1 Compile C, C++, Objective-C, Ada, Fortran, or
Java

Several versions of the compiler (C, C++, Objective-C, Ada, Fortran, and Java) are
integrated; this is why we use the name “GNU Compiler Collection”. GCC can compile
programs written in any of these languages. The Ada, Fortran, and Java compilers are
described in separate manuals.

“GCC” is a common shorthand term for the GNU Compiler Collection. This is both the
most general name for the compiler, and the name used when the emphasis is on compiling
C programs (as the abbreviation formerly stood for “GNU C Compiler”).

When referring to C++ compilation, it is usual to call the compiler “G++”. Since there is
only one compiler, it is also accurate to call it “GCC” no matter what the language context;
however, the term “G++" is more useful when the emphasis is on compiling C++ programs.

Similarly, when we talk about Ada compilation, we usually call the compiler “GNAT”,
for the same reasons.

We use the name “GCC” to refer to the compilation system as a whole, and more
specifically to the language-independent part of the compiler. For example, we refer to the
optimization options as affecting the behavior of “GCC” or sometimes just “the compiler”.

Front ends for other languages, such as Mercury and Pascal exist but have not yet been
integrated into GCC. These front ends, like that for C++, are built in subdirectories of GCC
and link to it. The result is an integrated compiler that can compile programs written in
C, C++, Objective-C, or any of the languages for which you have installed front ends.

In this manual, we only discuss the options for the C, Objective-C, and C++ compilers
and those of the GCC core. Consult the documentation of the other front ends for the
options to use when compiling programs written in other languages.

G++ is a compiler, not merely a preprocessor. G++ builds object code directly from your
C++ program source. There is no intermediate C version of the program. (By contrast,
for example, some other implementations use a program that generates a C program from
your C++ source.) Avoiding an intermediate C representation of the program means that
you get better object code, and better debugging information. The GNU debugger, GDB,
works with this information in the object code to give you comprehensive C++ source-level
editing capabilities (see section “C and C++” in Debugging with GDB).

Using the GNU Compiler Collection (GCC)

Chapter 2: Language Standards Supported by GCC 5

2 Language Standards Supported by GCC

For each language compiled by GCC for which there is a standard, GCC attempts to
follow one or more versions of that standard, possibly with some exceptions, and possibly
with some extensions.

GCC supports three versions of the C standard, although support for the most recent
version is not yet complete.

The original ANSI C standard (X3.159-1989) was ratified in 1989 and published in 1990.
This standard was ratified as an ISO standard (ISO/TEC 9899:1990) later in 1990. There
were no technical differences between these publications, although the sections of the ANSI
standard were renumbered and became clauses in the ISO standard. This standard, in
both its forms, is commonly known as C89, or occasionally as C90, from the dates of
ratification. The ANSI standard, but not the ISO standard, also came with a Rationale
document. To select this standard in GCC, use one of the options ‘-ansi’, ‘-std=c89’ or
‘-std=1809899:1990’; to obtain all the diagnostics required by the standard, you should
also specify ‘-pedantic’ (or ‘-pedantic-errors’ if you want them to be errors rather than
warnings). See Section 3.4 [Options Controlling C Dialect], page 19.

Errors in the 1990 ISO C standard were corrected in two Technical Corrigenda published
in 1994 and 1996. GCC does not support the uncorrected version.

An amendment to the 1990 standard was published in 1995. This amendment added
digraphs and __STDC_VERSION__ to the language, but otherwise concerned the library. This
amendment is commonly known as AMDI; the amended standard is sometimes known as
C94 or C95. To select this standard in GCC, use the option ‘~std=1s09899:199409’ (with,
as for other standard versions, ‘-pedantic’ to receive all required diagnostics).

A new edition of the ISO C standard was published in 1999 as ISO/IEC 9899:1999, and
is commonly known as C99. GCC has incomplete support for this standard version; see
http://gcc.gnu.org/gecc-3.1/c99status.html for details. To select this standard, use
‘-std=c99’ or ‘-std=1509899:1999’. (While in development, drafts of this standard version
were referred to as C9X.)

Errors in the 1999 ISO C standard were corrected in a Technical Corrigendum published
in 2001. GCC does not support the uncorrected version.

GCC also has some limited support for traditional (pre-ISO) C with the ‘~traditional’
option. This support may be of use for compiling some very old programs that have not
been updated to ISO C, but should not be used for new programs. It will not work with
some modern C libraries such as the GNU C library.

By default, GCC provides some extensions to the C language that on rare occasions con-
flict with the C standard. See Chapter 5 [Extensions to the C Language Family]|, page 155.
Use of the ‘-std’ options listed above will disable these extensions where they conflict with
the C standard version selected. You may also select an extended version of the C language
explicitly with ‘-std=gnu89’ (for C89 with GNU extensions) or ‘-std=gnu99’ (for C99 with
GNU extensions). The default, if no C language dialect options are given, is ‘-std=gnu89’;
this will change to ‘-std=gnu99’ in some future release when the C99 support is complete.
Some features that are part of the C99 standard are accepted as extensions in C89 mode.

The ISO C standard defines (in clause 4) two classes of conforming implementation. A
conforming hosted implementation supports the whole standard including all the library fa-

6 Using the GNU Compiler Collection (GCC)

cilities; a conforming freestanding implementation is only required to provide certain library
facilities: those in <float.h>, <limits.h>, <stdarg.h>, and <stddef.h>; since AMDI,
also those in <iso0646.h>; and in C99, also those in <stdbool.h> and <stdint.h>. In ad-
dition, complex types, added in C99, are not required for freestanding implementations. The
standard also defines two environments for programs, a freestanding environment, required
of all implementations and which may not have library facilities beyond those required of
freestanding implementations, where the handling of program startup and termination are
implementation-defined, and a hosted environment, which is not required, in which all the
library facilities are provided and startup is through a function int main (void) or int
main (int, char *[]). An OS kernel would be a freestanding environment; a program
using the facilities of an operating system would normally be in a hosted implementation.

GCC aims towards being usable as a conforming freestanding implementation, or as the
compiler for a conforming hosted implementation. By default, it will act as the compiler for a
hosted implementation, defining __STDC_HOSTED__ as 1 and presuming that when the names
of ISO C functions are used, they have the semantics defined in the standard. To make it act
as a conforming freestanding implementation for a freestanding environment, use the option
‘~ffreestanding’; it will then define __STDC_HOSTED__ to O and not make assumptions
about the meanings of function names from the standard library, with exceptions noted
below. To build an OS kernel, you may well still need to make your own arrangements for
linking and startup. See Section 3.4 [Options Controlling C Dialect], page 19.

GCC does not provide the library facilities required only of hosted implementations, nor
yet all the facilities required by C99 of freestanding implementations; to use the facilities
of a hosted environment, you will need to find them elsewhere (for example, in the GNU C
library). See Section 9.7 [Standard Libraries|, page 282.

Most of the compiler support routines used by GCC are present in ‘libgcc’, but there
are a few exceptions. GCC requires the freestanding environment provide memcpy, memmove,
memset and memcmp. Some older ports of GCC are configured to use the BSD bcopy, bzero
and bcmp functions instead, but this is deprecated for new ports. Finally, if __builtin_
trap is used, and the target does not implement the trap pattern, then GCC will emit a
call to abort.

For references to Technical Corrigenda, Rationale documents and information concerning
the history of C that is available online, see http://gcc.gnu.org/readings.html

There is no formal written standard for Objective-C. The most authoritative manual
is “Object-Oriented Programming and the Objective-C Language”, available at a number
of web sites; http://developer.apple.com/techpubs/macosx/Cocoa/0ObjectiveC/ has a
recent version, while http://www.toodarkpark.org/computers/objc/ is an older exam-
ple. http://www.gnustep.org includes useful information as well.

See section “About This Guide” in GNAT Reference Manual, for information on standard
conformance and compatibility of the Ada compiler.

See section “The GNU Fortran Language” in Using and Porting GNU Fortran, for details
of the Fortran language supported by GCC.

See section “Compatibility with the Java Platform” in GNU gcj, for details of compati-
bility between gcj and the Java Platform.

Chapter 3: GCC Command Options 7

3 GCC Command Options

When you invoke GCC, it normally does preprocessing, compilation, assembly and link-
ing. The “overall options” allow you to stop this process at an intermediate stage. For
example, the ‘-c’ option says not to run the linker. Then the output consists of object files
output by the assembler.

Other options are passed on to one stage of processing. Some options control the pre-
processor and others the compiler itself. Yet other options control the assembler and linker;
most of these are not documented here, since you rarely need to use any of them.

Most of the command line options that you can use with GCC are useful for C programs;
when an option is only useful with another language (usually C++), the explanation says
so explicitly. If the description for a particular option does not mention a source language,
you can use that option with all supported languages.

See Section 3.3 [Compiling C++ Programs|, page 19, for a summary of special options
for compiling C++ programs.

The gcc program accepts options and file names as operands. Many options have multi-
letter names; therefore multiple single-letter options may not be grouped: ‘-dr’ is very
different from ‘-d -r’.

You can mix options and other arguments. For the most part, the order you use doesn’t
matter. Order does matter when you use several options of the same kind; for example, if
you specify ‘-L’ more than once, the directories are searched in the order specified.

Many options have long names starting with ‘-f’ or with ‘-W—for example,
‘~fforce-mem’, ‘-fstrength-reduce’, ‘-Wformat’ and so on. Most of these have both
positive and negative forms; the negative form of ‘-ffoo’ would be ‘-fno-foo’. This
manual documents only one of these two forms, whichever one is not the default.

See [Option Index], page 337, for an index to GCC’s options.

3.1 Option Summary

Here is a summary of all the options, grouped by type. Explanations are in the following
sections.

Owverall Options
See Section 3.2 [Options Controlling the Kind of Output], page 16.
-c -S -E -o file -pipe -pass-exit-codes -x language
-v -### --target-help --help

C Language Options
See Section 3.4 [Options Controlling C Dialect], page 19.

-ansi -std=standard -aux-info filename

-fno-asm -fno-builtin -fno-builtin-function

-fhosted -ffreestanding

-trigraphs -no-integrated-cpp -traditional -traditional-cpp
-fallow-single-precision -fcond-mismatch

-fsigned-bitfields -fsigned-char

-funsigned-bitfields -funsigned-char

-fwritable-strings -fshort-wchar

8 Using the GNU Compiler Collection (GCC)

C++ Language Options
See Section 3.5 [Options Controlling C++ Dialect], page 24.

-fno-access-control -fcheck-new -fconserve-space
-fno-const-strings -fdollars-in-identifiers
-fno-elide-constructors
-fno-enforce-eh-specs -fexternal-templates
-falt-external-templates
-ffor-scope -fno-for-scope -fno-gnu-keywords
-fno-implicit-templates
-fno-implicit-inline-templates
-fno-implement-inlines -fms-extensions
-fno-nonansi-builtins -fno-operator-names
-fno-optional-diags -fpermissive
-frepo -fno-rtti -fstats -ftemplate-depth-n
-fuse-cxa-atexit -fvtable-gc -fno-weak -nostdinc++
-fno-default-inline -Wctor-dtor-privacy
-Wnon-virtual-dtor -Wreorder
-Weffc++ -Wno-deprecated
-Wno-non-template-friend -Wold-style-cast
-Woverloaded-virtual -Wno-pmf-conversions
-Wsign-promo -Wsynth

Objective-C' Language Options
See Section 3.6 [Options Controlling Objective-C Dialect], page 30.
-fconstant-string-class=class-name
-fgnu-runtime -fnext-runtime -gen-decls
-Wno-protocol -Wselector

Language Independent Options
See Section 3.7 [Options to Control Diagnostic Messages Formatting], page 31.
-fmessage-length=n
-fdiagnostics-show-location=[once|every-line]

Warning Options

See Section 3.8 [Options to Request or Suppress Warnings|, page 31.
-fsyntax-only -pedantic -pedantic-errors
-w -W -Wall -Waggregate-return
-Wcast-align -Wcast-qual -Wchar-subscripts -Wcomment
-Wconversion -Wno-deprecated-declarations
-Wdisabled-optimization -Wdiv-by-zero -Werror
-Wfloat-equal -Wformat -Wformat=2
-Wformat-nonliteral -Wformat-security
-Wimplicit -Wimplicit-int
-Wimplicit-function-declaration
-Werror-implicit-function-declaration
-Wimport -Winline
-Wlarger-than-len -Wlong-long
-Wmain -Wmissing-braces -Wmissing-declarations
-Wmissing-format-attribute -Wmissing-noreturn
-Wmultichar -Wno-format-extra-args -Wno-format-y2k

Chapter 3: GCC Command Options 9

-Wno-import -Wpacked -Wpadded
-Wparentheses -Wpointer—-arith -Wredundant-decls
-Wreturn-type -Wsequence-point -Wshadow
-Wsign-compare -Wswitch -Wsystem-headers
-Wtrigraphs -Wundef -Wuninitialized
-Wunknown-pragmas -Wunreachable-code
-Wunused -Wunused-function -Wunused-label -Wunused-parameter
-Wunused-value -Wunused-variable -Wwrite-strings
C-only Warning Options
-Wbad-function-cast -Wmissing-prototypes -Wnested-externs
-Wstrict-prototypes -Wtraditional

Debugging Options

See Section 3.9 [Options for Debugging Your Program or GCC], page 43.
-dletters -dumpspecs -dumpmachine -dumpversion
-fdump-unnumbered -fdump-translation-unit|-n]
-fdump-class-hierarchy[-n]
-fdump-tree-original[-n| -fdump-tree-optimized|-n]
-fdump-tree-inlined[-n]
-fmem-report -fpretend-float
-fprofile-arcs -ftest-coverage -ftime-report
-g -glevel -gcoff -gdwarf -gdwarf-1 -gdwarf-1+ -gdwarf-2
-ggdb -gstabs -gstabs+ -gvms -gxcoff -gxcoff+
-p -pg -print-file-name=library -print-libgcc-file-name
-print-multi-directory -print-multi-1ib
-print-prog-name=program -print-search-dirs -Q
-save-temps -time

Optimization Options

See Section 3.10 [Options that Control Optimization|, page 50.
-falign-functions=n -falign-jumps=n
-falign-labels=n -falign-loops=n
-fbranch-probabilities -fcaller-saves -fcprop-registers
-fcse-follow-jumps -fcse-skip-blocks -fdata-sections
-fdelayed-branch -fdelete-null-pointer-checks
-fexpensive-optimizations -ffast-math -ffloat-store
-fforce-addr —-fforce-mem -ffunction-sections
-fgcse -fgcse-1m -fgcse-sm
-finline-functions -finline-limit=n -fkeep-inline-functions
-fkeep-static-consts -fmerge-constants -fmerge-all-constants
-fmove-all-movables -fno-default-inline -fno-defer-pop
-fno-function-cse -fno-guess-branch-probability
-fno-inline -fno-math-errno -fno-peephole -fno-peephole?2
-funsafe-math-optimizations -fno-trapping-math
-fomit-frame-pointer -foptimize-register-move
-foptimize-sibling-calls -fprefetch-loop-arrays
-freduce-all-givs -fregmove -frename-registers
-frerun-cse-after-loop -frerun-loop-opt
-fschedule-insns -fschedule-insns2
-fsingle-precision-constant -fssa -fssa-ccp -fssa-dce

10 Using the GNU Compiler Collection (GCC)

-fstrength-reduce -fstrict-aliasing -fthread-jumps -ftrapv
—-funroll-all-loops —-funroll-loops
--param name=value -0 -00 -01 -02 -03 -0Os

Preprocessor Options
See Section 3.11 [Options Controlling the Preprocessor|, page 61.
-$ -Aquestion=answer -A-question|[=answer]
-C -dD -dI -dM -dN
-Dmacro[=defn] -E -H
-idirafter dir
-include file -imacros file
-iprefix file -iwithprefix dir
-iwithprefixbefore dir -isystem dir
-M -MM -MF -MG -MP -MQ -MT -nostdinc -P -remap
-trigraphs -undef -Umacro -Wp,option
Assembler Option
See Section 3.12 [Passing Options to the Assembler|, page 68.
-Wa, option
Linker Options
See Section 3.13 [Options for Linking], page 68.

object-file-name -llibrary

-nostartfiles -nodefaultlibs -nostdlib

-s -static -static-libgcc -shared -shared-libgcc -symbolic
-W1l,option -Xlinker option

-u symbol

Directory Options
See Section 3.14 [Options for Directory Search], page 71.
-Bprefix -Idir -I- -Ldir -specs=file
Target Options
See Section 3.16 [Target Options|, page 79.
-b machine -V version

Machine Dependent Options

See Section 3.17 [Hardware Models and Configurations], page 80.

M680x0 Options
-m68000 -m68020 -m68020-40 -m68020-60 -m68030 -m68040
-m68060 -mcpu3d2 -m5200 -m68881 -mbitfield -mc68000 -mc68020
-mfpa -mnobitfield -mrtd -mshort -msoft-float -mpcrel
-malign-int -mstrict-align

M68hclx Options
-m6811 -m6812 -m68hcll -m68hcl2
-mauto-incdec -mshort -msoft-reg-count=count

VAX Options
-mg -mgnu -munix

SPARC Options

Chapter 3: GCC Command Options

-mcpu=cpu-type

-mtune=cpu-type

-mcmodel=code-model

-m32 -m64

-mapp-regs -mbroken-saverestore -mcypress
-mfaster-structs -mflat

-mfpu -mhard-float -mhard-quad-float

-mimpure-text -mlive-g0 -mno-app-regs
-mno-faster-structs -mno-flat -mno-fpu

-mno-impure-text -mno-stack-bias -mno-unaligned-doubles
-msoft-float -msoft-quad-float -msparclite -mstack-bias
-msupersparc -munaligned-doubles -mv8

Convex Options

-mcl -mc2 -mc32 -mc34 -mc38
-margcount -mnoargcount

-mlong32 -mlong64

-mvolatile-cache -mvolatile-nocache

AMD29K Options

-m29000 -m29050 -mbw -mnbw -mdw -mndw
-mlarge -mnormal -msmall
-mkernel-registers -mno-reuse-arg-regs
-mno-stack-check -mno-storem-bug
-mreuse-arg-regs -msoft-float -mstack-check
-mstorem-bug -muser-registers

ARM Options
-mapcs—frame -mno-apcs-frame
-mapcs—-26 -mapcs—32
-mapcs—-stack-check -mno-apcs-stack-check
-mapcs—-float -mno-apcs-float
-mapcs-reentrant -mno-apcs-reentrant
-msched-prolog -mno-sched-prolog
-mlittle-endian -mbig-endian -mwords-little-endian
-malignment-traps -mno-alignment-traps
-msoft-float -mhard-float -mfpe
-mthumb-interwork -mno-thumb-interwork
-mcpu=name -march=name -mfpe=name
-mstructure-size-boundary=n
-mbsd -mxopen -mno-symrename
-mabort-on-noreturn
-mlong-calls -mno-long-calls
-msingle-pic-base -mno-single-pic-base
-mpic-register=reg
-mnop-fun-dllimport
-mpoke-function-name
-mthumb -marm
-mtpcs-frame -mtpcs-leaf-frame
-mcaller-super-interworking -mcallee-super-interworking

MN10200 Options

11

Using the GNU Compiler Collection (GCC)

-mrelax
MN10300 Options

-mmult-bug -mno-mult-bug
-mam33 -mno-am33
-mno-crt0 -mrelax

MS32R/D Options

-m32rx -m32r -mcode-model=model-type -msdata=sdata-type
-G num

M8SK Options

-m88000 -m88100 -m88110 -mbig-pic
-mcheck-zero-division -mhandle-large-shift
-midentify-revision -mno-check-zero-division
-mno-ocs-debug-info -mno-ocs-frame-position
-mno-optimize-arg-area -mno-serialize-volatile
-mno-underscores -mocs-debug-info
-mocs—frame-position -moptimize-arg-area
-mserialize-volatile -mshort-data-num -msvr3
-msvr4 -mtrap-large-shift -muse-div-instruction
-mversion-03.00 -mwarn-passed-structs

RS/6000 and PowerPC Options

-mcpu=cpu-type

-mtune=cpu-type

-mpower -mMNo-power -mpower2 -mno-power2

-mpowerpc -—mpowerpc64 -mno-powerpc

-maltivec -mno-altivec

—-mpowerpc-gpopt —-mno-powerpc-gpopt

-mpowerpc-gfxopt -mno-powerpc-gfxopt

-mnew-mnemonics -mold-mnemonics

-mfull-toc -mminimal-toc -mno-fp-in-toc -mno-sum-in-toc
-m64 -m32 -mxl-call -mno-xl-call -mpe

-msoft-float -mhard-float -mmultiple -mno-multiple
-mstring -mno-string -mupdate -mno-update

-mfused-madd -mno-fused-madd -mbit-align -mno-bit-align
-mstrict-align -mno-strict-align -mrelocatable
-mno-relocatable -mrelocatable-1ib -mno-relocatable-1ib
-mtoc —-mno-toc -mlittle -mlittle-endian -mbig -mbig-endian
-mcall-aix -mcall-sysv -mcall-netbsd
-maix-struct-return -msvr4-struct-return -mabi=altivec -mabi=no-altivec N
-mprototype -mno-prototype

-msim -mmvme -mads -myellowknife -memb -msdata
-msdata=opt -mvxworks -G num -pthread

RT Options
-mcall-lib-mul -mfp-arg-in-fpregs -mfp-arg-in-gregs
-mfull-fp-blocks -mhc-struct-return -min-line-mul
-mminimum-fp-blocks -mnohc-struct-return

MIPS Options

Chapter 3: GCC Command Options 13

-mabicalls -march=cpu-type —-mtune=cpu=type

-mcpu=cpu-type —membedded-data -muninit-const-in-rodata
-membedded-pic —mfp32 -mfp64 -mfused-madd -mno-fused-madd
-mgas -mgp32 -mgp64

-mgpopt -mhalf-pic -mhard-float -mint64 -mipsil

-mips2 -mips3 -mips4 -mlong64 -mlong32 -mlong-calls -mmemcpy
-mmips—-as -mmips-tfile -mno-abicalls

-mno-embedded-data -mno-uninit-const-in-rodata
-mno-embedded-pic -mno-gpopt -mno-long-calls

-mno-memcpy -—mno-mips-tfile -mno-rnames -mno-stats
-mrnames -msoft-float

-m4650 -msingle-float -mmad

-mstats -EL -EB -G num -nocpp

-mabi=32 -mabi=n32 -mabi=64 -mabi=eabi

-mfix7000 -mno-crt0 -mflush-func=func -mno-flush-func

1386 and x86-64 Options

HPPA

-mcpu=cpu-type -march=cpu-type -mfpmath=unit
-masm=dialect -mno-fancy-math-387

-mno-fp-ret-in-387 -msoft-float -msvr3-shlib
-mno-wide-multiply -mrtd -malign-double
-mpreferred-stack-boundary=num

-mmmx -msse -msse2 -msse-math -m3dnow

-mthreads -mno-align-stringops -minline-all-stringops
-mpush-args -maccumulate-outgoing-args -m128bit-long-double
-m96bit-long-double -mregparm=num -momit-leaf-frame-pointer
-mno-red-zone

-m32 -m64

Options

-march=architecture-type

-mbig-switch -mdisable-fpregs -mdisable-indexing
-mfast-indirect-calls -mgas -mjump-in-delay
-mlong-load-store -mno-big-switch -mno-disable-fpregs
-mno-disable-indexing -mno-fast-indirect-calls -mno-gas
-mno-jump-in-delay -mno-long-load-store
-mno-portable-runtime -mno-soft-float

-mno-space-regs -msoft-float -mpa-risc-1-0
-mpa-risc-1-1 -mpa-risc-2-0 -mportable-runtime
-mschedule=cpu-type -mspace-regs

Intel 960 Options

-mcpu-type —-masm-compat -mclean-linkage
-mcode-align -mcomplex-addr -mleaf-procedures
-mic-compat -mic2.0-compat -mic3.0-compat
-mintel-asm -mno-clean-linkage -mno-code-align
-mno-complex-addr -mno-leaf-procedures
-mno-old-align -mno-strict-align -mno-tail-call
-mnumerics -mold-align -msoft-float -mstrict-align
-mtail-call

DEC Alpha Options

14

Using the GNU Compiler Collection (GCC)

-mno-fp-regs -msoft-float -malpha-as -mgas
-mieee -mieee-with-inexact -mieee-conformant
-mfp-trap-mode=mode -mfp-rounding-mode=mode
-mtrap-precision=mode -mbuild-constants
-mcpu=cpu-type -mtune=cpu-type
-mbwx -mmax -mfix -mcix
-mfloat-vax -mfloat-ieee
-mexplicit-relocs -msmall-data -mlarge-data
-mmemory-latency=time

DEC Alpha/VMS Options
-mvms-return-codes
Clipper Options
-mc300 -mc400
H8/300 Options
-mrelax -mh -ms -mint32 -malign-300
SH Options
-m1 -m2 -m3 -m3e
-m4-nofpu -mé4-single-only -m4-single -m4
-mb-64media -mb-64media-nofpu
-mb-32media -mb-32media-nofpu
-mb-compact -mb-compact-nofpu
-mb -ml -mdalign -mrelax
-mbigtable -mfmovd -mhitachi -mnomacsave
-mieee -misize -mpadstruct -mspace
-mprefergot -musermode
System V Options
-Qy -Qn -YP,paths -Ym,dir
ARC Options
-EB -EL
-mmangle-cpu -mcpu=cpu -mtext=text-section
-mdata=data-section -mrodata=readonly-data-section
TMS320C3z/Chx Options
-mcpu=cpu -mbig -msmall -mregparm -mmemparm
-mfast-fix -mmpyi -mbk -mti -mdp-isr-reload
-mrpts=count -mrptb -mdb -mloop-unsigned
-mparallel-insns -mparallel-mpy -mpreserve-float
V850 Options

-mlong-calls -mno-long-calls -mep -mno-ep
-mprolog-function —-mno-prolog-function -mspace
-mtda=n -msda=n -mzda=n
-mv850 -mbig-switch

NS32K Options

-m32032 -m32332 -m32532 -m32081 -m32381
-mmult-add —-mnomult-add -msoft-float -mrtd -mnortd

Chapter 3: GCC Command Options 15

-mregparam -mnoregparam -—msb -mnosb
-mbitfield —-mnobitfield —-mhimem -mnohimem

AVR Options

-mmcu=mcu -msize -minit-stack=n -mno-interrupts
-mcall-prologues -mno-tablejump -mtiny-stack

MCore Options

-mhardlit -mno-hardlit -mdiv -mno-div -mrelax-immediates
-mno-relax-immediates —-mwide-bitfields -mno-wide-bitfields
-m4byte-functions -mno-4byte-functions -mcallgraph-data
-mno-callgraph-data -mslow-bytes -mno-slow-bytes -mno-lsim
-mlittle-endian -mbig-endian -m210 -m340 -mstack-increment

MMIX Options

IA-64

D30V

S/390

-mlibfuncs -mno-libfuncs -mepsilon -mno-epsilon -mabi=gnu
-mabi=mmixware -mzero-extend -mknuthdiv -mtoplevel-symbols
-melf -mbranch-predict -mno-branch-predict -mbase-addresses
-mno-base-addresses

Options

-mbig-endian -mlittle-endian -mgnu-as -mgnu-ld -mno-pic
-mvolatile-asm-stop -mb-step -mregister-names -mno-sdata
-mconstant-gp -mauto-pic -minline-divide-min-latency
-minline-divide-max-throughput -mno-dwarf2-asm
-mfixed-range=register-range
Options

-mextmem -mextmemory -monchip -mno-asm-optimize -masm-optimize |j
-mbranch-cost=n -mcond-exec=n
and zSeries Options

-mhard-float -msoft-float -mbackchain -mno-backchain
-msmall-exec -mno-small-exec —-mmvcle —-mno-mvcle
-m64 -m31 -mdebug -mno-debug

CRIS Options

-mcpu=cpu -march=cpu -mtune=cpu

-mmax-stack-frame=n -melinux-stacksize=n

-metrax4 -metrax100 -mpdebug -mcc-init -mno-side-effects
-mstack-align -mdata-align -mconst-align

-m32-bit -m16-bit -m8-bit -mno-prologue-epilogue -mno-gotplt
-melf -maout -melinux -mlinux -sim -sim2

PDP-11 Options

-mfpu -msoft-float -macO -mno-acO -m40 -m45 -m10
-mbcopy -mbcopy-builtin -mint32 -mno-inti16
-mintl6 -mno-int32 -mfloat32 -mno-float64
-mfloat64 -mno-float32 -mabshi -mno-abshi
-mbranch-expensive -mbranch-cheap
-msplit -mno-split -munix-asm -mdec-asm

Xstormyl6 Options

16 Using the GNU Compiler Collection (GCC)

-msim
Xtensa Options
-mbig-endian -mlittle-endian
-mdensity -mno-density
-mmacl6é -mno-macl6
-mmull6 -mno-mull6
-mmul32 -mno-mul32
-mnsa -mno-nsa
-mminmax -mno-minmax
-msext -mno-sext
-mbooleans -mno-booleans
-mhard-float -msoft-float
-mfused-madd -mno-fused-madd
-mserialize-volatile -mno-serialize-volatile
-mtext-section-literals -mno-text-section-literals
-mtarget-align -mno-target-align
-mlongcalls -mno-longcalls

Code Generation Options
See Section 3.18 [Options for Code Generation Conventions|, page 140.

-fcall-saved-reg —-fcall-used-reg

-ffixed-reg -fexceptions

-fnon-call-exceptions -funwind-tables
-fasynchronous-unwind-tables
-finhibit-size-directive -finstrument-functions
—-fno-common -fno-ident -fno-gnu-linker
-fpcc-struct-return -fpic -fPIC
-freg-struct-return -fshared-data -fshort-enums
-fshort-double -fvolatile

-fvolatile-global -fvolatile-static
-fverbose-asm -fpack-struct -fstack-check
-fstack-limit-register=reg -fstack-limit-symbol=sym
-fargument-alias -fargument-noalias
-fargument-noalias-global -fleading-underscore

3.2 Options Controlling the Kind of Output

Compilation can involve up to four stages: preprocessing, compilation proper, assembly
and linking, always in that order. The first three stages apply to an individual source
file, and end by producing an object file; linking combines all the object files (those newly
compiled, and those specified as input) into an executable file.

For any given input file, the file name suffix determines what kind of compilation is done:

file.c C source code which must be preprocessed.

file.1 C source code which should not be preprocessed.

file.ii C++ source code which should not be preprocessed.

file.m Objective-C source code. Note that you must link with the library ‘libobjc.a’

to make an Objective-C program work.

Chapter 3: GCC Command Options 17

file.mi Objective-C source code which should not be preprocessed.

file.h C header file (not to be compiled or linked).

file.cc

file.cp

file. cxx

file. cpp

file. c++

file.C C++ source code which must be preprocessed. Note that in ‘. cxx’, the last two
letters must both be literally ‘x’. Likewise, .C’ refers to a literal capital C.

file. £

file.for

file.FOR Fortran source code which should not be preprocessed.

file.F

file.fpp

file.FPP Fortran source code which must be preprocessed (with the traditional prepro-
Cessor).

file.r Fortran source code which must be preprocessed with a RATFOR preprocessor
(not included with GCC).
See section “Options Controlling the Kind of Output” in Using and Porting
GNU Fortran, for more details of the handling of Fortran input files.

file.ads Ada source code file which contains a library unit declaration (a declaration of
a package, subprogram, or generic, or a generic instantiation), or a library unit
renaming declaration (a package, generic, or subprogram renaming declaration).
Such files are also called specs

file.adb Ada source code file containing a library unit body (a subprogram or package
body). Such files are also called bodies.

file.s Assembler code.

file.S Assembler code which must be preprocessed.

other An object file to be fed straight into linking. Any file name with no recognized

suffix is treated this way.
You can specify the input language explicitly with the ‘-x’ option:

-x language
Specify explicitly the language for the following input files (rather than letting
the compiler choose a default based on the file name suffix). This option applies
to all following input files until the next ‘-x’ option. Possible values for language
are:

¢ c-header cpp-output

c++ c++-cpp-output
objective-c objc-cpp-output
assembler assembler-with-cpp
ada

£f77 f£77-cpp-input ratfor
java

18 Using the GNU Compiler Collection (GCC)

-X none Turn off any specification of a language, so that subsequent files are handled

according to their file name suffixes (as they are if ‘-x’ has not been used at
all).

-pass-exit-codes
Normally the gcc program will exit with the code of 1 if any phase of the
compiler returns a non-success return code. If you specify ‘-pass-exit-codes’,
the gcc program will instead return with numerically highest error produced
by any phase that returned an error indication.

If you only want some of the stages of compilation, you can use ‘-x’ (or filename suffixes)
to tell gcc where to start, and one of the options ‘-¢’, ‘-S’, or ‘-E’ to say where gcc is to
stop. Note that some combinations (for example, ‘-x cpp-output -E’) instruct gcc to do
nothing at all.

e Compile or assemble the source files, but do not link. The linking stage simply

is not done. The ultimate output is in the form of an object file for each source
file.

By default, the object file name for a source file is made by replacing the suffix

‘¢, ¢4, L8, ete., with ¢ o’

Unrecognized input files, not requiring compilation or assembly, are ignored.

-S Stop after the stage of compilation proper; do not assemble. The output is in
the form of an assembler code file for each non-assembler input file specified.

By default, the assembler file name for a source file is made by replacing the

suffix <.¢’, ‘.17, etc., with ‘.s’.

Input files that don’t require compilation are ignored.

-E Stop after the preprocessing stage; do not run the compiler proper. The output
is in the form of preprocessed source code, which is sent to the standard output.

Input files which don’t require preprocessing are ignored.

-o file Place output in file file. This applies regardless to whatever sort of output is
being produced, whether it be an executable file, an object file, an assembler
file or preprocessed C code.

Since only one output file can be specified, it does not make sense to use ‘-0’
when compiling more than one input file, unless you are producing an executable
file as output.

If ‘-0’ is not specified, the default is to put an executable file in ‘a.out’, the
object file for ‘source.suffix’ in ‘source.o’, its assembler file in ‘source.s’, and
all preprocessed C source on standard output.

-v Print (on standard error output) the commands executed to run the stages of
compilation. Also print the version number of the compiler driver program and
of the preprocessor and the compiler proper.

— Like ‘-v’ except the commands are not executed and all command arguments
are quoted. This is useful for shell scripts to capture the driver-generated
command lines.

Chapter 3: GCC Command Options 19

-pipe Use pipes rather than temporary files for communication between the various
stages of compilation. This fails to work on some systems where the assembler
is unable to read from a pipe; but the GNU assembler has no trouble.

--help Print (on the standard output) a description of the command line options un-
derstood by gcc. If the ‘-v’ option is also specified then ‘--help’ will also be
passed on to the various processes invoked by gcc, so that they can display
the command line options they accept. If the ‘=W’ option is also specified then
command line options which have no documentation associated with them will
also be displayed.

-—target-help
Print (on the standard output) a description of target specific command line
options for each tool.

3.3 Compiling C++ Programs

C++ source files conventionally use one of the suffixes *.C’, ‘.cc’, ‘.cpp’, ‘.c++’, ‘.cp’, or
‘. cxx’; preprocessed C++ files use the suffix ‘.ii’. GCC recognizes files with these names
and compiles them as C++ programs even if you call the compiler the same way as for
compiling C programs (usually with the name gcc).

However, C++ programs often require class libraries as well as a compiler that under-
stands the C++ language—and under some circumstances, you might want to compile pro-
grams from standard input, or otherwise without a suffix that flags them as C++ programs.
g++ is a program that calls GCC with the default language set to C++, and automatically
specifies linking against the C++ library. On many systems, g++ is also installed with the
name c++.

When you compile C++ programs, you may specify many of the same command-line
options that you use for compiling programs in any language; or command-line options
meaningful for C and related languages; or options that are meaningful only for C++ pro-
grams. See Section 3.4 [Options Controlling C Dialect], page 19, for explanations of options
for languages related to C. See Section 3.5 [Options Controlling C++ Dialect], page 24, for
explanations of options that are meaningful only for C++ programs.

3.4 Options Controlling C Dialect

The following options control the dialect of C (or languages derived from C, such as C++
and Objective-C) that the compiler accepts:

-ansi In C mode, support all ISO C89 programs. In C++ mode, remove GNU exten-
sions that conflict with ISO C++.

This turns off certain features of GCC that are incompatible with ISO C89
(when compiling C code), or of standard C++ (when compiling C++ code), such
as the asm and typeof keywords, and predefined macros such as unix and vax
that identify the type of system you are using. It also enables the undesirable
and rarely used ISO trigraph feature. For the C compiler, it disables recognition
of C++ style ¢//’ comments as well as the inline keyword.

20

-std=

Using the GNU Compiler Collection (GCC)

The alternate keywords __asm__, __extension__, __inline__ and __typeof_
_ continue to work despite ‘-ansi’. You would not want to use them in an ISO
C program, of course, but it is useful to put them in header files that might be
included in compilations done with ‘-ansi’. Alternate predefined macros such

as __unix__ and __vax__ are also available, with or without ‘-ansi’.

The ‘-ansi’ option does not cause non-ISO programs to be rejected gratu-
itously. For that, ‘-pedantic’ is required in addition to ‘-ansi’. See Section 3.8
[Warning Options|, page 31.
The macro __STRICT_ANSI__ is predefined when the ‘-ansi’ option is used.
Some header files may notice this macro and refrain from declaring certain
functions or defining certain macros that the ISO standard doesn’t call for; this
is to avoid interfering with any programs that might use these names for other

things.

3

Functions which would normally be built in but do not have semantics defined
by ISO C (such as alloca and ffs) are not built-in functions with ‘-ansi’ is
used. See Section 5.45 [Other built-in functions provided by GCC], page 217,
for details of the functions affected.

Determine the language standard. This option is currently only supported when
compiling C. A value for this option must be provided; possible values are

‘c89’
‘1809899:1990’
ISO C89 (same as ‘—ansi’).

‘1809899:199409’
ISO CR&9 as modified in amendment 1.

‘c99’

c9x’

‘1509899:1999’

‘1509899:199x’
ISO C99. Note that this standard is not yet fully supported;
see http://gcc.gnu.org/gcc-3.1/c99status.html for more in-
formation. The names ‘c9x’ and ‘1s09899:199x%’ are deprecated.

3

‘gnu89’ Default, ISO C89 plus GNU extensions (including some C99 fea-
tures).

‘gnu99’

‘gnu9x’ ISO C99 plus GNU extensions. When ISO C99 is fully implemented
in GCC, this will become the default. The name ‘gnu9x’ is depre-
cated.

Even when this option is not specified, you can still use some of the features of
newer standards in so far as they do not conflict with previous C standards. For
example, you may use __restrict__ even when ‘-std=c99’ is not specified.

The ‘-std’ options specifying some version of ISO C have the same effects as
‘~ansi’, except that features that were not in ISO C89 but are in the specified

Chapter 3: GCC Command Options 21

version (for example, ‘//’ comments and the inline keyword in ISO C99) are
not disabled.

See Chapter 2 [Language Standards Supported by GCC], page 5, for details of
these standard versions.

—aux-info filename

-fno-asm

Output to the given filename prototyped declarations for all functions declared
and/or defined in a translation unit, including those in header files. This option
is silently ignored in any language other than C.

Besides declarations, the file indicates, in comments, the origin of each declara-
tion (source file and line), whether the declaration was implicit, prototyped or
unprototyped (‘I’, ‘N’ for new or ‘0’ for old, respectively, in the first character
after the line number and the colon), and whether it came from a declaration
or a definition (‘C’ or ‘F’, respectively, in the following character). In the case
of function definitions, a K&R-style list of arguments followed by their decla-
rations is also provided, inside comments, after the declaration.

Do not recognize asm, inline or typeof as a keyword, so that code can use
these words as identifiers. You can use the keywords __asm inline__ and
__typeof__ instead. ‘-ansi’ implies ‘~fno-asm’.

—_ ——

In C++, this switch only affects the typeof keyword, since asm and inline
are standard keywords. You may want to use the ‘~fno-gnu-keywords’ flag
instead, which has the same effect. In C99 mode (‘-std=c99’ or ‘-std=gnu99’),
this switch only affects the asm and typeof keywords, since inline is a standard
keyword in ISO C99.

-fno-builtin
-fno-builtin-function (C and Objective-C only)

Don’t recognize built-in functions that do not begin with ‘__builtin_’ as prefix.
See Section 5.45 [Other built-in functions provided by GCC], page 217, for
details of the functions affected, including those which are not built-in functions
when ‘-ansi’ or ‘-std’ options for strict ISO C conformance are used because
they do not have an ISO standard meaning.

GCC normally generates special code to handle certain built-in functions more
efficiently; for instance, calls to alloca may become single instructions that
adjust the stack directly, and calls to memcpy may become inline copy loops.
The resulting code is often both smaller and faster, but since the function calls
no longer appear as such, you cannot set a breakpoint on those calls, nor can
you change the behavior of the functions by linking with a different library.

In C++, ‘~fno-builtin’ is always in effect. The ‘-fbuiltin’ option has no
effect. Therefore, in C++, the only way to get the optimization benefits of built-
in functions is to call the function using the ‘__builtin_’ prefix. The GNU
C++ Standard Library uses built-in functions to implement many functions (like
std::strchr), so that you automatically get efficient code.

With the ‘-fno-builtin-function’ option, not available when compiling C++,
only the built-in function function is disabled. function must not begin with
‘__builtin_’. If a function is named this is not built-in in this version of GCC,

22

—-fhosted

Using the GNU Compiler Collection (GCC)

this option is ignored. There is no corresponding ‘~fbuiltin-function’ option;
if you wish to enable built-in functions selectively when using ‘-fno-builtin’
or ‘-ffreestanding’, you may define macros such as:

#define abs(n) __builtin_abs ((n))

#define strcpy(d, s) __builtin_strcpy ((d), (s))

Assert that compilation takes place in a hosted environment. This implies
‘~fbuiltin’. A hosted environment is one in which the entire standard library
is available, and in which main has a return type of int. Examples are nearly
everything except a kernel. This is equivalent to ‘~fno-freestanding’.

-ffreestanding

-trigraphs

Assert that compilation takes place in a freestanding environment. This implies
‘~fno-builtin’. A freestanding environment is one in which the standard
library may not exist, and program startup may not necessarily be at main. The
most obvious example is an OS kernel. This is equivalent to ‘~-fno-hosted’.

See Chapter 2 [Language Standards Supported by GCC], page 5, for details of
freestanding and hosted environments.

Support ISO C trigraphs. The ‘-ansi’ option (and ‘-std’ options for strict ISO
C conformance) implies ‘~trigraphs’.

-no-integrated-cpp

Invoke the external cpp during compilation. The default is to use the integrated
cpp (internal cpp). This option also allows a user-supplied cpp via the ‘-B’
option. This flag is applicable in both C and C++ modes.

We do not guarantee to retain this option in future, and we may change its
semantics.

—-traditional

Attempt to support some aspects of traditional C compilers. Specifically:

e All extern declarations take effect globally even if they are written inside
of a function definition. This includes implicit declarations of functions.

e The newer keywords typeof, inline, signed, const and volatile are not
recognized. (You can still use the alternative keywords such as __typeof_
inline__, and so on.)

- = J—}
e Comparisons between pointers and integers are always allowed.
e Integer types unsigned short and unsigned char promote to unsigned
int.
e Out-of-range floating point literals are not an error.

e Certain constructs which ISO regards as a single invalid preprocessing num-
ber, such as ‘0xe-0xd’, are treated as expressions instead.

e String “constants” are not necessarily constant; they are stored in writable
space, and identical looking constants are allocated separately. (This is the
same as the effect of ‘~fwritable-strings’.)

Chapter 3: GCC Command Options 23

e All automatic variables not declared register are preserved by longjmp.
Ordinarily, GNU C follows ISO C: automatic variables not declared
volatile may be clobbered.

e The character escape sequences ‘\x’ and ‘\a’ evaluate as the literal char-
acters ‘x’ and ‘a’ respectively. Without ‘~traditional’, ‘\x’ is a prefix for
the hexadecimal representation of a character, and ‘\a’ produces a bell.

This option is deprecated and may be removed.

You may wish to use ‘~-fno-builtin’ as well as ‘~traditional’ if your program
uses names that are normally GNU C built-in functions for other purposes of
its own.

You cannot use ‘-~traditional’ if you include any header files that rely on
ISO C features. Some vendors are starting to ship systems with ISO C header
files and you cannot use ‘-~traditional’ on such systems to compile files that
include any system headers.

The ‘-traditional’ option also enables ‘~traditional-cpp’.

-traditional-cpp
Attempt to support some aspects of traditional C preprocessors. See the GNU
CPP manual for details.

-fcond-mismatch
Allow conditional expressions with mismatched types in the second and third
arguments. The value of such an expression is void. This option is not supported
for C++.

-funsigned-char
Let the type char be unsigned, like unsigned char.

Each kind of machine has a default for what char should be. It is either like
unsigned char by default or like signed char by default.

Ideally, a portable program should always use signed char or unsigned char
when it depends on the signedness of an object. But many programs have been
written to use plain char and expect it to be signed, or expect it to be unsigned,
depending on the machines they were written for. This option, and its inverse,
let you make such a program work with the opposite default.

The type char is always a distinct type from each of signed char or unsigned
char, even though its behavior is always just like one of those two.

—-fsigned-char
Let the type char be signed, like signed char.

Note that this is equivalent to ‘-fno-unsigned-char’, which is the negative
form of ‘~funsigned-char’. Likewise, the option ‘~fno-signed-char’ is equiv-
alent to ‘-funsigned-char’.

24 Using the GNU Compiler Collection (GCC)

-fsigned-bitfields

-funsigned-bitfields

-fno-signed-bitfields

-fno-unsigned-bitfields
These options control whether a bit-field is signed or unsigned, when the dec-
laration does not use either signed or unsigned. By default, such a bit-field is
signed, because this is consistent: the basic integer types such as int are signed
types.

However, when ‘-traditional’ is used, bit-fields are all unsigned no matter
what.

-fwritable-strings
Store string constants in the writable data segment and don’t uniquize them.
This is for compatibility with old programs which assume they can write into
string constants. The option ‘~traditional’ also has this effect.

Writing into string constants is a very bad idea; “constants” should be constant.

—-fallow-single-precision
Do not promote single precision math operations to double precision, even when
compiling with ‘~traditional’.

Traditional K&R C promotes all floating point operations to double precision,
regardless of the sizes of the operands. On the architecture for which you are
compiling, single precision may be faster than double precision. If you must use
‘~traditional’, but want to use single precision operations when the operands
are single precision, use this option. This option has no effect when compiling
with ISO or GNU C conventions (the default).

-fshort-wchar
Override the underlying type for ‘wchar_t’ to be ‘short unsigned int’ instead
of the default for the target. This option is useful for building programs to run
under WINE.

3.5 Options Controlling C++ Dialect

This section describes the command-line options that are only meaningful for C++ pro-
grams; but you can also use most of the GNU compiler options regardless of what language
your program is in. For example, you might compile a file firstClass.C like this:

g++ —-g —-frepo -0 -c firstClass.C

In this example, only ‘~frepo’ is an option meant only for C++ programs; you can use the
other options with any language supported by GCC.

Here is a list of options that are only for compiling C++ programs:
-fno-access-control

Turn off all access checking. This switch is mainly useful for working around
bugs in the access control code.

Chapter 3: GCC Command Options 25

-fcheck-new
Check that the pointer returned by operator new is non-null before attempting
to modify the storage allocated. The current Working Paper requires that
operator new never return a null pointer, so this check is normally unnecessary.

An alternative to using this option is to specify that your operator new does
not throw any exceptions; if you declare it ‘throw()’, G++ will check the return
value. See also ‘new (nothrow)’.

-fconserve-space
Put uninitialized or runtime-initialized global variables into the common seg-
ment, as C does. This saves space in the executable at the cost of not diagnosing
duplicate definitions. If you compile with this flag and your program mysteri-
ously crashes after main() has completed, you may have an object that is being
destroyed twice because two definitions were merged.

This option is no longer useful on most targets, now that support has been
added for putting variables into BSS without making them common.

-fno-const-strings
Give string constants type char * instead of type const char *. By default,
G++ uses type const char * as required by the standard. FEven if you use
‘~fno-const-strings’, you cannot actually modify the value of a string con-
stant, unless you also use ‘-fwritable-strings’.

This option might be removed in a future release of G++. For maximum porta-
bility, you should structure your code so that it works with string constants
that have type const char *.

-fdollars-in-identifiers
Accept ‘$’ in identifiers. You can also explicitly prohibit use of ‘$’ with the
option ‘-fno-dollars-in-identifiers’. (GNU C allows ‘¢’ by default on
most target systems, but there are a few exceptions.) Traditional C allowed the
character ‘$’ to form part of identifiers. However, ISO C and C++ forbid ‘$’ in
identifiers.

-fno-elide-constructors
The C++ standard allows an implementation to omit creating a temporary which
is only used to initialize another object of the same type. Specifying this option
disables that optimization, and forces G++ to call the copy constructor in all
cases.

-fno-enforce-eh-specs
Don’t check for violation of exception specifications at runtime. This option
violates the C++ standard, but may be useful for reducing code size in produc-
tion builds, much like defining ‘NDEBUG’. The compiler will still optimize based
on the exception specifications.

-fexternal-templates
Cause ‘#tpragma interface’ and ‘implementation’ to apply to template in-
stantiation; template instances are emitted or not according to the location of
the template definition. See Section 6.6 [Template Instantiation], page 254, for
more information.

26 Using the GNU Compiler Collection (GCC)

This option is deprecated.

-falt-external-templates
Similar to ‘~fexternal-templates’, but template instances are emitted or not
according to the place where they are first instantiated. See Section 6.6 [Tem-
plate Instantiation], page 254, for more information.

This option is deprecated.

-ffor-scope

—-fno-for-scope
If ‘~ffor-scope’ is specified, the scope of variables declared in a for-init-
statement is limited to the ‘for’ loop itself, as specified by the C++ standard.
If ‘~fno-for-scope’ is specified, the scope of variables declared in a for-init-
statement extends to the end of the enclosing scope, as was the case in old
versions of G++, and other (traditional) implementations of C++.

The default if neither flag is given to follow the standard, but to allow and give
a warning for old-style code that would otherwise be invalid, or have different
behavior.

-fno-gnu-keywords
Do not recognize typeof as a keyword, so that code can use this word as
an identifier. You can use the keyword __typeof__ instead. ‘-ansi’ implies
‘~fno-gnu-keywords’.

-fno-implicit-templates
Never emit code for non-inline templates which are instantiated implicitly (i.e.
by use); only emit code for explicit instantiations. See Section 6.6 [Template
Instantiation], page 254, for more information.

-fno-implicit-inline-templates
Don’t emit code for implicit instantiations of inline templates, either. The
default is to handle inlines differently so that compiles with and without opti-
mization will need the same set of explicit instantiations.

-fno-implement-inlines
To save space, do not emit out-of-line copies of inline functions controlled by
‘#pragma implementation’. This will cause linker errors if these functions are
not inlined everywhere they are called.

-fms-extensions
Disable pedantic warnings about constructs used in MFC, such as implicit int
and getting a pointer to member function via non-standard syntax.

-fno-nonansi-builtins
Disable built-in declarations of functions that are not mandated by ANSI/ISO
C. These include ffs, alloca, _exit, index, bzero, conjf, and other related
functions.

—-fno-operator-names
Do not treat the operator name keywords and, bitand, bitor, compl, not, or
and xor as synonyms as keywords.

Chapter 3: GCC Command Options 27

-fno-optional-diags
Disable diagnostics that the standard says a compiler does not need to issue.
Currently, the only such diagnostic issued by G++ is the one for a name having
multiple meanings within a class.

—fpermissive
Downgrade messages about nonconformant code from errors to warnings. By
default, G++ effectively sets ‘-pedantic-errors’ without ‘-pedantic’; this op-
tion reverses that. This behavior and this option are superseded by ‘-pedantic’,
which works as it does for GNU C.

-frepo Enable automatic template instantiation at link time. This option also im-
plies ‘~fno-implicit-templates’. See Section 6.6 [Template Instantiation],
page 254, for more information.

-fno-rtti
Disable generation of information about every class with virtual functions
for use by the C++ runtime type identification features (‘dynamic_cast’
and ‘typeid’). If you don’t use those parts of the language, you can save
some space by using this flag. Note that exception handling uses the same
information, but it will generate it as needed.

-fstats Emit statistics about front-end processing at the end of the compilation. This
information is generally only useful to the G++ development team.

-ftemplate-depth-n
Set the maximum instantiation depth for template classes to n. A limit on
the template instantiation depth is needed to detect endless recursions during
template class instantiation. ANSI/ISO C++ conforming programs must not
rely on a maximum depth greater than 17.

-fuse-cxa-atexit
Register destructors for objects with static storage duration with the __cxa_
atexit function rather than the atexit function. This option is required for
fully standards-compliant handling of static destructors, but will only work if
your C library supports __cxa_atexit.

-fvtable-gc
Emit special relocations for vtables and virtual function references so that
the linker can identify unused virtual functions and zero out vtable slots
that refer to them. This is most useful with ‘~-ffunction-sections’ and
‘-Wl,--gc-sections’, in order to also discard the functions themselves.

This optimization requires GNU as and GNU Id. Not all systems support this
option. ‘-W1,--gc-sections’ is ignored without ‘-static’.

-fno-weak
Do not use weak symbol support, even if it is provided by the linker. By
default, G++ will use weak symbols if they are available. This option exists
only for testing, and should not be used by end-users; it will result in inferior
code and has no benefits. This option may be removed in a future release of
G++.

28 Using the GNU Compiler Collection (GCC)

-nostdinc++
Do not search for header files in the standard directories specific to C++, but do
still search the other standard directories. (This option is used when building
the C++ library.)

In addition, these optimization, warning, and code generation options have meanings
only for C++ programs:

-fno-default-inline
Do not assume ‘inline’ for functions defined inside a class scope. See Sec-
tion 3.10 [Options That Control Optimization], page 50. Note that these func-
tions will have linkage like inline functions; they just won’t be inlined by default.

-Wector-dtor-privacy (C++ only)
Warn when a class seems unusable, because all the constructors or destructors
in a class are private and the class has no friends or public static member
functions.

-Wnon-virtual-dtor (C++ only)
Warn when a class declares a non-virtual destructor that should probably be
virtual, because it looks like the class will be used polymorphically.

-Wreorder (C++ only)
Warn when the order of member initializers given in the code does not match
the order in which they must be executed. For instance:
struct A {
int 1i;
int j;
AO: j (0, 1 (1 {3
};
Here the compiler will warn that the member initializers for ‘i’ and ‘j’ will be
rearranged to match the declaration order of the members.

The following ‘-W. ..’ options are not affected by ‘-Wall’.

-Weffc++ (C++ only)
Warn about violations of the following style guidelines from Scott Meyers’ Ef-
fective C++ book:

e Item 11: Define a copy constructor and an assignment operator for classes
with dynamically allocated memory.

e Item 12: Prefer initialization to assignment in constructors.

e Item 14: Make destructors virtual in base classes.

e Item 15: Have operator= return a reference to *this.

e Item 23: Don’t try to return a reference when you must return an object.
and about violations of the following style guidelines from Scott Meyers’ More
Effective C++ book:

e Item 6: Distinguish between prefix and postfix forms of increment and
decrement operators.

e Item 7: Never overload &&, ||, or ,.

Chapter 3: GCC Command Options 29

If you use this option, you should be aware that the standard library headers
do not obey all of these guidelines; you can use ‘grep -v’ to filter out those
warnings.

-Wno-deprecated (C++ only)
Do not warn about usage of deprecated features. See Section 6.10 [Deprecated
Features|, page 258.

-Wno-non-template-friend (C++ only)

Disable warnings when non-templatized friend functions are declared within a
template. With the advent of explicit template specification support in G++,
if the name of the friend is an unqualified-id (i.e., ‘friend foo(int)’), the
C++ language specification demands that the friend declare or define an ordi-
nary, nontemplate function. (Section 14.5.3). Before G++ implemented explicit
specification, unqualified-ids could be interpreted as a particular specialization
of a templatized function. Because this non-conforming behavior is no longer
the default behavior for G++, ‘-Wnon-template-friend’ allows the compiler to
check existing code for potential trouble spots, and is on by default. This new
compiler behavior can be turned off with ‘~Wno-non-template-friend’ which
keeps the conformant compiler code but disables the helpful warning.

-Wold-style-cast (C++ only)
Warn if an old-style (C-style) cast to a non-void type is used within a C++
program. The new-style casts (‘static_cast’, ‘reinterpret_cast’, and
‘const_cast’) are less vulnerable to unintended effects, and much easier to
grep for.

-Woverloaded-virtual (C++ only)
Warn when a function declaration hides virtual functions from a base class. For
example, in:
struct A {
virtual void f();

};

struct B: public A {
void f(int);
+;
the A class version of f is hidden in B, and code like this:
Bx b;
b—>f();

will fail to compile.

-Wno-pmf-conversions (C++ only)
Disable the diagnostic for converting a bound pointer to member function to a
plain pointer.

-Wsign-promo (C++ only)
Warn when overload resolution chooses a promotion from unsigned or enumeral
type to a signed type over a conversion to an unsigned type of the same size.

30 Using the GNU Compiler Collection (GCC)

Previous versions of G++ would try to preserve unsignedness, but the standard
mandates the current behavior.

-Wsynth (C++ only)
Warn when G++’s synthesis behavior does not match that of cfront. For in-
stance:
struct A {
operator int ();
A& operator = (int);

+;
main ()
{
A a,b;
a =b;
}

In this example, G++ will synthesize a default ‘A& operator = (const A&);’,
while cfront will use the user-defined ‘operator =’.

3.6 Options Controlling Objective-C Dialect

This section describes the command-line options that are only meaningful for Objective-

C programs; but you can also use most of the GNU compiler options regardless of what

language your program is in. For example, you might compile a file some_class.m like this:
gcc —g —fgnu-runtime -0 -c some_class.m

In this example, only ‘~fgnu-runtime’ is an option meant only for Objective-C programs;
you can use the other options with any language supported by GCC.

Here is a list of options that are only for compiling Objective-C programs:

-fconstant-string-class=class-name
Use class-name as the name of the class to instantiate for each literal string
specified with the syntax @"...". The default class name is NXConstantString.

-fgnu-runtime
Generate object code compatible with the standard GNU Objective-C runtime.
This is the default for most types of systems.

—-fnext-runtime
Generate output compatible with the NeXT runtime. This is the default for
NeXT-based systems, including Darwin and Mac OS X.

-gen-decls
Dump interface declarations for all classes seen in the source file to a file named
‘sourcename.decl’.

-Wno-protocol
Do not warn if methods required by a protocol are not implemented in the class
adopting it.

-Wselector
Warn if a selector has multiple methods of different types defined.

Chapter 3: GCC Command Options 31

3.7 Options to Control Diagnostic Messages Formatting

Traditionally, diagnostic messages have been formatted irrespective of the output de-
vice’s aspect (e.g. its width, ...). The options described below can be used to control the
diagnostic messages formatting algorithm, e.g. how many characters per line, how often
source location information should be reported. Right now, only the C++ front end can
honor these options. However it is expected, in the near future, that the remaining front
ends would be able to digest them correctly.

-fmessage-length=n
Try to format error messages so that they fit on lines of about n characters. The
default is 72 characters for g++ and 0 for the rest of the front ends supported
by GCC. If n is zero, then no line-wrapping will be done; each error message
will appear on a single line.

-fdiagnostics-show-location=once
Only meaningful in line-wrapping mode. Instructs the diagnostic messages re-
porter to emit once source location information; that is, in case the message
is too long to fit on a single physical line and has to be wrapped, the source
location won’t be emitted (as prefix) again, over and over, in subsequent con-
tinuation lines. This is the default behavior.

-fdiagnostics-show-location=every-line
Only meaningful in line-wrapping mode. Instructs the diagnostic messages
reporter to emit the same source location information (as prefix) for physical
lines that result from the process of breaking a message which is too long to fit
on a single line.

3.8 Options to Request or Suppress Warnings

Warnings are diagnostic messages that report constructions which are not inherently
erroneous but which are risky or suggest there may have been an error.

You can request many specific warnings with options beginning ‘-W’, for example
‘~Wimplicit’ to request warnings on implicit declarations. Each of these specific warning
options also has a negative form beginning ‘-Wno-’ to turn off warnings; for example,
‘~Wno-implicit’. This manual lists only one of the two forms, whichever is not the
default.

The following options control the amount and kinds of warnings produced by GCC; for
further, language-specific options also refer to Section 3.5 [C++ Dialect Options|, page 24
and Section 3.6 [Objective-C Dialect Options], page 30.

-fsyntax-only
Check the code for syntax errors, but don’t do anything beyond that.

-pedantic
Issue all the warnings demanded by strict ISO C and ISO C++; reject all pro-
grams that use forbidden extensions, and some other programs that do not

follow ISO C and ISO C++. For ISO C, follows the version of the ISO C stan-
dard specified by any ‘-std’ option used.

32

-pedantic-

W

Using the GNU Compiler Collection (GCC)

Valid ISO C and ISO C++ programs should compile properly with or without
this option (though a rare few will require ‘-ansi’ or a ‘-std’ option specifying
the required version of ISO C). However, without this option, certain GNU
extensions and traditional C and C++ features are supported as well. With this
option, they are rejected.

‘-pedantic’ does not cause warning messages for use of the alternate keywords
whose names begin and end with ‘__’. Pedantic warnings are also disabled in
the expression that follows __extension__. However, only system header files
should use these escape routes; application programs should avoid them. See
Section 5.40 [Alternate Keywords], page 213.

¢

Some users try to use ‘-pedantic’ to check programs for strict ISO C con-
formance. They soon find that it does not do quite what they want: it finds
some non-ISO practices, but not all—only those for which ISO C requires a
diagnostic, and some others for which diagnostics have been added.

A feature to report any failure to conform to ISO C might be useful in some
instances, but would require considerable additional work and would be quite
different from ‘-pedantic’. We don’t have plans to support such a feature in
the near future.

Where the standard specified with ‘-std’ represents a GNU extended dialect
of C, such as ‘gnu89’ or ‘gnu99’; there is a corresponding base standard, the
version of ISO C on which the GNU extended dialect is based. Warnings from
‘-pedantic’ are given where they are required by the base standard. (It would
not make sense for such warnings to be given only for features not in the spec-
ified GNU C dialect, since by definition the GNU dialects of C include all fea-
tures the compiler supports with the given option, and there would be nothing
to warn about.)

errors
Like ‘-pedantic’, except that errors are produced rather than warnings.

Inhibit all warning messages.

-Wno-import

Inhibit warning messages about the use of ‘#import’.

-Wchar-subscripts

-Wcomment

-Wformat

Warn if an array subscript has type char. This is a common cause of error, as
programmers often forget that this type is signed on some machines.

Warn whenever a comment-start sequence ‘/*’ appears in a ‘/*’ comment, or
whenever a Backslash-Newline appears in a ‘//’ comment.

Check calls to printf and scanf, etc., to make sure that the arguments supplied
have types appropriate to the format string specified, and that the conversions
specified in the format string make sense. This includes standard functions,
and others specified by format attributes (see Section 5.26 [Function Attributes],
page 172), in the printf, scanf, strftime and strfmon (an X/Open extension,
not in the C standard) families.

Chapter 3: GCC Command Options 33

The formats are checked against the format features supported by GNU libc
version 2.2. These include all ISO C89 and C99 features, as well as features
from the Single Unix Specification and some BSD and GNU extensions. Other
library implementations may not support all these features; GCC does not sup-
port warning about features that go beyond a particular library’s limitations.
However, if ‘-pedantic’ is used with ‘~-Wformat’, warnings will be given about
format features not in the selected standard version (but not for strfmon for-
mats, since those are not in any version of the C standard). See Section 3.4
[Options Controlling C Dialect], page 19.

‘-Wformat’ is included in ‘-Wall’. For more control over some aspects of
format checking, the options ‘-Wno-format-y2k’, ‘-Wno-format-extra-args’,
‘~Wformat-nonliteral’, ‘-Wformat-security’ and ‘-Wformat=2’ are available,
but are not included in ‘-Wall’.

-Wno-format-y2k
If ‘-Wformat’ is specified, do not warn about strftime formats which may yield
only a two-digit year.

-Wno-format-extra-args
If ‘~Wformat’ is specified, do not warn about excess arguments to a printf
or scanf format function. The C standard specifies that such arguments are
ignored.

Where the unused arguments lie between used arguments that are specified
with ‘$’ operand number specifications, normally warnings are still given, since
the implementation could not know what type to pass to va_arg to skip the
unused arguments. However, in the case of scanf formats, this option will
suppress the warning if the unused arguments are all pointers, since the Single
Unix Specification says that such unused arguments are allowed.

-Wformat-nonliteral
If ‘-Wformat’ is specified, also warn if the format string is not a string literal and
so cannot be checked, unless the format function takes its format arguments as
ava_list.

-Wformat-security

If ‘~Wformat’ is specified, also warn about uses of format functions that repre-
sent possible security problems. At present, this warns about calls to printf
and scanf functions where the format string is not a string literal and there
are no format arguments, as in printf (foo);. This may be a security hole
if the format string came from untrusted input and contains ‘%n’. (This is
currently a subset of what ‘-Wformat-nonliteral’ warns about, but in fu-
ture warnings may be added to ‘-Wformat-security’ that are not included in
‘~Wformat-nonliteral’.)

-Wformat=2
Enable ‘-Wformat’ plus format checks not included in ‘-Wformat’. Currently
equivalent to ‘-Wformat -Wformat-nonliteral -Wformat-security’.

-Wimplicit-int
Warn when a declaration does not specify a type.

34

-Wimplicit

Using the GNU Compiler Collection (GCC)

—-function-declaration

-Werror-implicit-function-declaration

-Wimplicit

-Wmain

-Wmissing-

-Wparenthe

Give a warning (or error) whenever a function is used before being declared.

Same as ‘-Wimplicit-int’ and ‘-Wimplicit-function-declaration’.

Warn if the type of ‘main’ is suspicious. ‘main’ should be a function with
external linkage, returning int, taking either zero arguments, two, or three
arguments of appropriate types.

braces

Warn if an aggregate or union initializer is not fully bracketed. In the following
example, the initializer for ‘a’ is not fully bracketed, but that for ‘b’ is fully
bracketed.

int a[2][2]
int b[2] [2]

b 1’ 2’ 3 };

{0

ses

Warn if parentheses are omitted in certain contexts, such as when there is an
assignment in a context where a truth value is expected, or when operators are
nested whose precedence people often get confused about.

Also warn about constructions where there may be confusion to which if state-
ment an else branch belongs. Here is an example of such a case:

{
if (a)
if (b)
foo (O;
else
bar ();
}

In C, every else branch belongs to the innermost possible if statement, which
in this example is if (b). This is often not what the programmer expected, as
illustrated in the above example by indentation the programmer chose. When
there is the potential for this confusion, GCC will issue a warning when this flag
is specified. To eliminate the warning, add explicit braces around the innermost
if statement so there is no way the else could belong to the enclosing if. The
resulting code would look like this:

{
if (a)
{
if (b)
foo O;
else
bar ();

Chapter 3: GCC Command Options 35

-Wsequence-point

Warn about code that may have undefined semantics because of violations of
sequence point rules in the C standard.

The C standard defines the order in which expressions in a C program are eval-
uated in terms of sequence points, which represent a partial ordering between
the execution of parts of the program: those executed before the sequence point,
and those executed after it. These occur after the evaluation of a full expression
(one which is not part of a larger expression), after the evaluation of the first
operand of a &&, | |, ? : or , (comma) operator, before a function is called (but
after the evaluation of its arguments and the expression denoting the called
function), and in certain other places. Other than as expressed by the sequence
point rules, the order of evaluation of subexpressions of an expression is not
specified. All these rules describe only a partial order rather than a total order,
since, for example, if two functions are called within one expression with no
sequence point between them, the order in which the functions are called is not
specified. However, the standards committee have ruled that function calls do
not overlap.

It is not specified when between sequence points modifications to the values of
objects take effect. Programs whose behavior depends on this have undefined
behavior; the C standard specifies that “Between the previous and next se-
quence point an object shall have its stored value modified at most once by the
evaluation of an expression. Furthermore, the prior value shall be read only to
determine the value to be stored.”. If a program breaks these rules, the results
on any particular implementation are entirely unpredictable.

Examples of code with undefined behavior are a = a++;, a[n] = b[n++] and
ali++] = 1i;. Some more complicated cases are not diagnosed by this option,
and it may give an occasional false positive result, but in general it has been
found fairly effective at detecting this sort of problem in programs.

The present implementation of this option only works for C programs. A future
implementation may also work for C++ programs.

The C standard is worded confusingly, therefore there is some debate over the
precise meaning of the sequence point rules in subtle cases. Links to discussions
of the problem, including proposed formal definitions, may be found on our
readings page, at http://gcc.gnu.org/readings.html.

-Wreturn-type

-Wswitch

Warn whenever a function is defined with a return-type that defaults to int.
Also warn about any return statement with no return-value in a function whose
return-type is not void.

For C++, a function without return type always produces a diagnostic message,
even when ‘-Wno-return-type’ is specified. The only exceptions are ‘main’ and
functions defined in system headers.

Warn whenever a switch statement has an index of enumeral type and lacks a
case for one or more of the named codes of that enumeration. (The presence
of a default label prevents this warning.) case labels outside the enumeration
range also provoke warnings when this option is used.

36 Using the GNU Compiler Collection (GCC)

-Wtrigraphs
Warn if any trigraphs are encountered that might change the meaning of the
program (trigraphs within comments are not warned about).

-Wunused-function
Warn whenever a static function is declared but not defined or a non\-inline
static function is unused.

-Wunused-label
Warn whenever a label is declared but not used.

To suppress this warning use the ‘unused’ attribute (see Section 5.33 [Variable
Attributes], page 184).

-Wunused-parameter
Warn whenever a function parameter is unused aside from its declaration.

To suppress this warning use the ‘unused’ attribute (see Section 5.33 [Variable
Attributes], page 184).

-Wunused-variable
Warn whenever a local variable or non-constant static variable is unused aside
from its declaration

To suppress this warning use the ‘unused’ attribute (see Section 5.33 [Variable
Attributes], page 184).

-Wunused-value
Warn whenever a statement computes a result that is explicitly not used.

To suppress this warning cast the expression to ‘void’.

-Wunused All all the above ‘~Wunused’ options combined.

In order to get a warning about an unused function parameter, you must either
specify ‘-W -Wunused’ or separately specify ‘~-Wunused-parameter’.

-Wuninitialized
Warn if an automatic variable is used without first being initialized or if a
variable may be clobbered by a setjmp call.

These warnings are possible only in optimizing compilation, because they re-
quire data flow information that is computed only when optimizing. If you
don’t specify ‘-0’, you simply won’t get these warnings.

These warnings occur only for variables that are candidates for register alloca-
tion. Therefore, they do not occur for a variable that is declared volatile, or
whose address is taken, or whose size is other than 1, 2, 4 or 8 bytes. Also, they
do not occur for structures, unions or arrays, even when they are in registers.

Note that there may be no warning about a variable that is used only to compute
a value that itself is never used, because such computations may be deleted by
data flow analysis before the warnings are printed.

These warnings are made optional because GCC is not smart enough to see all
the reasons why the code might be correct despite appearing to have an error.
Here is one example of how this can happen:

Chapter 3: GCC Command Options 37

{
int x;
switch (y)
{
case 1: x = 1;
break;
case 2: x = 4;
break;
case 3: x = 5;
}
foo (x);
}
If the value of y is always 1, 2 or 3, then x is always initialized, but GCC doesn’t
know this. Here is another common case:
{
int save_y;
if (change_y) save_y = y, y = new_y;

if (change_y) y = save_y;
}

This has no bug because save_y is used only if it is set.

This option also warns when a non-volatile automatic variable might be changed
by a call to longjmp. These warnings as well are possible only in optimizing
compilation.

The compiler sees only the calls to setjmp. It cannot know where longjmp will
be called; in fact, a signal handler could call it at any point in the code. As a
result, you may get a warning even when there is in fact no problem because
longjmp cannot in fact be called at the place which would cause a problem.

Some spurious warnings can be avoided if you declare all the functions you
use that never return as noreturn. See Section 5.26 [Function Attributes],
page 172.

-Wreorder (C++ only)
Warn when the order of member initializers given in the code does not match
the order in which they must be executed. For instance:

-Wunknown-pragmas
Warn when a #pragma directive is encountered which is not understood by
GCC. If this command line option is used, warnings will even be issued for
unknown pragmas in system header files. This is not the case if the warnings
were only enabled by the ‘-Wall’ command line option.

-Wall All of the above ‘-W options combined. This enables all the warnings about
constructions that some users consider questionable, and that are easy to avoid
(or modify to prevent the warning), even in conjunction with macros.

-Wdiv-by-zero
Warn about compile-time integer division by zero. This is default. To inhibit
the warning messages, use ‘-Wno-div-by-zero’. Floating point division by zero

38 Using the GNU Compiler Collection (GCC)

is not warned about, as it can be a legitimate way of obtaining infinities and
NaNs.

-Wmultichar
Warn if a multicharacter constant (‘’FO0F’’) is used. This is default. To inhibit
the warning messages, use ‘-Wno-multichar’. Usually they indicate a typo in
the user’s code, as they have implementation-defined values, and should not be
used in portable code.

-Wsystem-headers

Print warning messages for constructs found in system header files. Warnings
from system headers are normally suppressed, on the assumption that they
usually do not indicate real problems and would only make the compiler output
harder to read. Using this command line option tells GCC to emit warnings
from system headers as if they occurred in user code. However, note that using
‘-Wall’ in conjunction with this option will not warn about unknown pragmas
in system headers—for that, ‘~-Wunknown-pragmas’ must also be used.

The following ‘-W. ..’ options are not implied by ‘-Wall’. Some of them warn about
constructions that users generally do not consider questionable, but which occasionally you
might wish to check for; others warn about constructions that are necessary or hard to
avoid in some cases, and there is no simple way to modify the code to suppress the warning.

-W Print extra warning messages for these events:

e A function can return either with or without a value. (Falling off the end of
the function body is considered returning without a value.) For example,
this function would evoke such a warning:

foo (a)
{
if (a > 0)
return a;
}

e An expression-statement or the left-hand side of a comma expression con-
tains no side effects. To suppress the warning, cast the unused expression
to void. For example, an expression such as ‘x[i, j]’ will cause a warning,
but ‘x[(void)i,j]’ will not.

e An unsigned value is compared against zero with ‘<’ or ‘<=",

e A comparison like ‘x<=y<=z’ appears; this is equivalent to ‘(x<=y 7 1 : 0)
<= z’, which is a different interpretation from that of ordinary mathemat-

ical notation.

e Storage-class specifiers like static are not the first things in a declaration.
According to the C Standard, this usage is obsolescent.

e The return type of a function has a type qualifier such as const. Such a
type qualifier has no effect, since the value returned by a function is not an
lvalue. (But don’t warn about the GNU extension of volatile void return
types. That extension will be warned about if ‘-pedantic’ is specified.)

e If ‘-Wall’ or ‘-Wunused’ is also specified, warn about unused arguments.

Chapter 3:

GCC Command Options 39

e A comparison between signed and unsigned values could produce an in-
correct result when the signed value is converted to unsigned. (But don’t
warn if ‘~-Wno-sign-compare’ is also specified.)

e An aggregate has a partly bracketed initializer. For example, the following
code would evoke such a warning, because braces are missing around the
initializer for x.h:

struct s { int £, g; };
struct t { struct s h; int i; };
struct t x = {1, 2, 3 };

e An aggregate has an initializer which does not initialize all members. For
example, the following code would cause such a warning, because x.h would
be implicitly initialized to zero:

struct s { int f, g, h; };
struct s x = { 3, 4 };

-Wfloat-equal

Warn if floating point values are used in equality comparisons.

The idea behind this is that sometimes it is convenient (for the programmer)
to consider floating-point values as approximations to infinitely precise real
numbers. If you are doing this, then you need to compute (by analysing the
code, or in some other way) the maximum or likely maximum error that the
computation introduces, and allow for it when performing comparisons (and
when producing output, but that’s a different problem). In particular, instead
of testing for equality, you would check to see whether the two values have
ranges that overlap; and this is done with the relational operators, so equality
comparisons are probably mistaken.

-Wtraditional (C only)

Warn about certain constructs that behave differently in traditional and ISO
C. Also warn about ISO C constructs that have no traditional C equivalent,
and/or problematic constructs which should be avoided.

e Macro parameters that appear within string literals in the macro body. In
traditional C macro replacement takes place within string literals, but does
not in ISO C.

e In traditional C, some preprocessor directives did not exist. Traditional
preprocessors would only consider a line to be a directive if the ‘#’ appeared
in column 1 on the line. Therefore ‘~Wtraditional’ warns about directives
that traditional C understands but would ignore because the ‘#” does not
appear as the first character on the line. It also suggests you hide directives
like ‘#pragma’ not understood by traditional C by indenting them. Some
traditional implementations would not recognize ‘#elif’, so it suggests
avoiding it altogether.

e A function-like macro that appears without arguments.
e The unary plus operator.

e The ‘U’ integer constant suffix, or the ‘F’ or ‘L’ floating point constant
suffixes. (Traditional C does support the ‘L’ suffix on integer constants.)

40 Using the GNU Compiler Collection (GCC)

Note, these suffixes appear in macros defined in the system headers of most
modern systems, e.g. the ‘_MIN’/‘_MAX’ macros in <limits.h>. Use of these
macros in user code might normally lead to spurious warnings, however
gece’s integrated preprocessor has enough context to avoid warning in these
cases.

e A function declared external in one block and then used after the end of
the block.

e A switch statement has an operand of type long.

e A non-static function declaration follows a static one. This construct
is not accepted by some traditional C compilers.

e The ISO type of an integer constant has a different width or signedness
from its traditional type. This warning is only issued if the base of the
constant is ten. I.e. hexadecimal or octal values, which typically represent
bit patterns, are not warned about.

e Usage of ISO string concatenation is detected.
e Initialization of automatic aggregates.

e Identifier conflicts with labels. Traditional C lacks a separate namespace
for labels.

e Initialization of unions. If the initializer is zero, the warning is omitted.
This is done under the assumption that the zero initializer in user code
appears conditioned on e.g. __STDC__ to avoid missing initializer warnings
and relies on default initialization to zero in the traditional C case.

e Conversions by prototypes between fixed/floating point values and vice
versa. The absence of these prototypes when compiling with traditional C
would cause serious problems. This is a subset of the possible conversion
warnings, for the full set use ‘-Wconversion’.

-Wundef Warn if an undefined identifier is evaluated in an ‘#if’ directive.

-Wshadow Warn whenever a local variable shadows another local variable, parameter or
global variable or whenever a built-in function is shadowed.

-Wlarger-than-len
Warn whenever an object of larger than len bytes is defined.

-Wpointer-arith
Warn about anything that depends on the “size of” a function type or of void.
GNU C assigns these types a size of 1, for convenience in calculations with void
* pointers and pointers to functions.

-Wbad-function-cast (C only)
Warn whenever a function call is cast to a non-matching type. For example,
warn if int malloc() is cast to anything *.

-Wcast-qual
Warn whenever a pointer is cast so as to remove a type qualifier from the target
type. For example, warn if a const char * is cast to an ordinary char *.

Chapter 3: GCC Command Options 41

-Wcast-align
Warn whenever a pointer is cast such that the required alignment of the target
is increased. For example, warn if a char * is cast to an int * on machines
where integers can only be accessed at two- or four-byte boundaries.

-Wwrite-strings

When compiling C, give string constants the type const char [length] so that
copying the address of one into a non-const char * pointer will get a warning;
when compiling C++, warn about the deprecated conversion from string con-
stants to char *. These warnings will help you find at compile time code that
can try to write into a string constant, but only if you have been very careful
about using const in declarations and prototypes. Otherwise, it will just be a
nuisance; this is why we did not make ‘-Wall’ request these warnings.

-Wconversion
Warn if a prototype causes a type conversion that is different from what would
happen to the same argument in the absence of a prototype. This includes
conversions of fixed point to floating and vice versa, and conversions changing
the width or signedness of a fixed point argument except when the same as the
default promotion.

Also, warn if a negative integer constant expression is implicitly converted to an
unsigned type. For example, warn about the assignment x = -1 if x is unsigned.
But do not warn about explicit casts like (unsigned) -1.

-Wsign-compare
Warn when a comparison between signed and unsigned values could produce an
incorrect result when the signed value is converted to unsigned. This warning
is also enabled by ‘-W’; to get the other warnings of ‘~W’ without this warning,
use ‘-W -Wno-sign-compare’.

-Waggregate-return
Warn if any functions that return structures or unions are defined or called. (In
languages where you can return an array, this also elicits a warning.)

-Wstrict-prototypes (C only)
Warn if a function is declared or defined without specifying the argument types.
(An old-style function definition is permitted without a warning if preceded by
a declaration which specifies the argument types.)

-Wmissing-prototypes (C only)
Warn if a global function is defined without a previous prototype declaration.
This warning is issued even if the definition itself provides a prototype. The
aim is to detect global functions that fail to be declared in header files.

-Wmissing-declarations
Warn if a global function is defined without a previous declaration. Do so even
if the definition itself provides a prototype. Use this option to detect global
functions that are not declared in header files.

-Wmissing-noreturn
Warn about functions which might be candidates for attribute noreturn. Note
these are only possible candidates, not absolute ones. Care should be taken

42

Using the GNU Compiler Collection (GCC)

to manually verify functions actually do not ever return before adding the
noreturn attribute, otherwise subtle code generation bugs could be introduced.
You will not get a warning for main in hosted C environments.

-Wmissing-format-attribute

If ‘~Wformat’ is enabled, also warn about functions which might be candidates
for format attributes. Note these are only possible candidates, not absolute
ones. GCC will guess that format attributes might be appropriate for any
function that calls a function like vprintf or vscanf, but this might not always
be the case, and some functions for which format attributes are appropriate
may not be detected. This option has no effect unless ‘~Wformat’ is enabled
(possibly by ‘-Wall’).

-Wno-deprecated-declarations

-Wpacked

-Wpadded

Do not warn about uses of functions, variables, and types marked as deprecated
by using the deprecated attribute. (see Section 5.26 [Function Attributes],
page 172, see Section 5.33 [Variable Attributes], page 184, see Section 5.34
[Type Attributes|, page 188.)

Warn if a structure is given the packed attribute, but the packed attribute has
no effect on the layout or size of the structure. Such structures may be mis-
aligned for little benefit. For instance, in this code, the variable f.x in struct
bar will be misaligned even though struct bar does not itself have the packed
attribute:

struct foo {

int x;

char a, b, c, d;
} __attribute__((packed));
struct bar {

char z;

struct foo f;

};

Warn if padding is included in a structure, either to align an element of the
structure or to align the whole structure. Sometimes when this happens it is
possible to rearrange the fields of the structure to reduce the padding and so
make the structure smaller.

-Wredundant-decls

Warn if anything is declared more than once in the same scope, even in cases
where multiple declaration is valid and changes nothing.

-Wnested-externs (C only)

Warn if an extern declaration is encountered within a function.

-Wunreachable-code

Warn if the compiler detects that code will never be executed.

This option is intended to warn when the compiler detects that at least a whole
line of source code will never be executed, because some condition is never
satisfied or because it is after a procedure that never returns.

Chapter 3: GCC Command Options 43

It is possible for this option to produce a warning even though there are circum-
stances under which part of the affected line can be executed, so care should
be taken when removing apparently-unreachable code.

For instance, when a function is inlined, a warning may mean that the line is
unreachable in only one inlined copy of the function.

This option is not made part of ‘-Wall’ because in a debugging version of a
program there is often substantial code which checks correct functioning of the
program and is, hopefully, unreachable because the program does work. An-
other common use of unreachable code is to provide behavior which is selectable
at compile-time.

-Winline Warn if a function can not be inlined and it was declared as inline.

-Wlong-long
Warn if ‘long long’ type is used. This is default. To inhibit the warning
messages, use ‘-Wno-long-long’. Flags ‘-Wlong-long’ and ‘-~Wno-long-long’

are taken into account only when ‘~pedantic’ flag is used.

-Wdisabled-optimization
Warn if a requested optimization pass is disabled. This warning does not gen-
erally indicate that there is anything wrong with your code; it merely indicates
that GCC’s optimizers were unable to handle the code effectively. Often, the
problem is that your code is too big or too complex; GCC will refuse to optimize
programs when the optimization itself is likely to take inordinate amounts of
time.

-Werror Make all warnings into errors.

3.9 Options for Debugging Your Program or GCC

GCC has various special options that are used for debugging either your program or
GCC:

-g Produce debugging information in the operating system’s native format (stabs,
COFF, XCOFF, or DWARF). GDB can work with this debugging information.

On most systems that use stabs format, ‘-g’ enables use of extra debugging in-
formation that only GDB can use; this extra information makes debugging work
better in GDB but will probably make other debuggers crash or refuse to read
the program. If you want to control for certain whether to generate the extra
information, use ‘-gstabs+’, ‘-gstabs’, ‘~gxcoff+’, ‘~gxcoff’, ‘~gdwarf-1+’,
‘~gdwarf-1’, or ‘-gvms’ (see below).

3 ¢ ¢

Unlike most other C compilers, GCC allows you to use ‘-g’ with ‘-0’. The
shortcuts taken by optimized code may occasionally produce surprising results:
some variables you declared may not exist at all; flow of control may briefly move
where you did not expect it; some statements may not be executed because they
compute constant results or their values were already at hand; some statements
may execute in different places because they were moved out of loops.

Nevertheless it proves possible to debug optimized output. This makes it rea-
sonable to use the optimizer for programs that might have bugs.

44 Using the GNU Compiler Collection (GCC)
The following options are useful when GCC is generated with the capability for
more than one debugging format.

-ggdb Produce debugging information for use by GDB. This means to use the most
expressive format available (DWARF 2, stabs, or the native format if neither
of those are supported), including GDB extensions if at all possible.

-gstabs Produce debugging information in stabs format (if that is supported), without
GDB extensions. This is the format used by DBX on most BSD systems.
On MIPS, Alpha and System V Release 4 systems this option produces stabs
debugging output which is not understood by DBX or SDB. On System V
Release 4 systems this option requires the GNU assembler.

-gstabs+ Produce debugging information in stabs format (if that is supported), using
GNU extensions understood only by the GNU debugger (GDB). The use of
these extensions is likely to make other debuggers crash or refuse to read the
program.

-gcoff Produce debugging information in COFF format (if that is supported). This is
the format used by SDB on most System V systems prior to System V Release
4.

-gxcoff Produce debugging information in XCOFF format (if that is supported). This
is the format used by the DBX debugger on IBM RS/6000 systems.

-gxcoff+ Produce debugging information in XCOFF format (if that is supported), using
GNU extensions understood only by the GNU debugger (GDB). The use of
these extensions is likely to make other debuggers crash or refuse to read the
program, and may cause assemblers other than the GNU assembler (GAS) to
fail with an error.

-gdwarf Produce debugging information in DWARF version 1 format (if that is sup-
ported). This is the format used by SDB on most System V Release 4 systems.

-gdwarf+ Produce debugging information in DWARF version 1 format (if that is sup-
ported), using GNU extensions understood only by the GNU debugger (GDB).
The use of these extensions is likely to make other debuggers crash or refuse to
read the program.

-gdwarf-2
Produce debugging information in DWARF version 2 format (if that is sup-
ported). This is the format used by DBX on IRIX 6.

-gvms Produce debugging information in VMS debug format (if that is supported).
This is the format used by DEBUG on VMS systems.

-glevel

-ggdblevel

-gstabslevel

-gcofflevel

-gxcofflevel

-gvmslevel Request debugging information and also use level to specify how much infor-

mation. The default level is 2.

Chapter 3:

P

~pg

-Q

GCC Command Options 45

Level 1 produces minimal information, enough for making backtraces in parts
of the program that you don’t plan to debug. This includes descriptions of
functions and external variables, but no information about local variables and
no line numbers.

Level 3 includes extra information, such as all the macro definitions present in
the program. Some debuggers support macro expansion when you use ‘-g3’.

Note that in order to avoid confusion between DWARF1 debug level 2, and
DWARF2, neither ‘-gdwarf’ nor ‘-gdwarf-2’ accept a concatenated debug

level. Instead use an additional ‘-glevel’ option to change the debug level for
DWARF1 or DWARF2.

Generate extra code to write profile information suitable for the analysis pro-
gram prof. You must use this option when compiling the source files you want
data about, and you must also use it when linking.

Generate extra code to write profile information suitable for the analysis pro-
gram gprof. You must use this option when compiling the source files you want
data about, and you must also use it when linking.

Generate extra code to write profile information for basic blocks, which will
record the number of times each basic block is executed, the basic block start
address, and the function name containing the basic block. If ‘-g’ is used, the
line number and filename of the start of the basic block will also be recorded.
If not overridden by the machine description, the default action is to append
to the text file ‘bb.out’.

This data could be analyzed by a program like tcov. Note, however, that the
format of the data is not what tcov expects. Eventually GNU gprof should
be extended to process this data.

Makes the compiler print out each function name as it is compiled, and print
some statistics about each pass when it finishes.

-ftime-report

Makes the compiler print some statistics about the time consumed by each pass
when it finishes.

-fmem-report

Makes the compiler print some statistics about permanent memory allocation
when it finishes.

-fprofile-arcs

Instrument arcs during compilation to generate coverage data or for profile-
directed block ordering. During execution the program records how many times
each branch is executed and how many times it is taken. When the compiled
program exits it saves this data to a file called ‘sourcename.da’ for each source
file.

For profile-directed block ordering, compile the program with ‘~fprofile-arcs’
plus optimization and code generation options, generate the arc profile infor-
mation by running the program on a selected workload, and then compile the
program again with the same optimization and code generation options plus

46

Using the GNU Compiler Collection (GCC)

‘~fbranch-probabilities’ (see Section 3.10 [Options that Control Optimiza-
tion], page 50).

The other use of ‘~fprofile-arcs’ is for use with gcov, when it is used with the
‘~ftest-coverage’ option. GCC supports two methods of determining code
coverage: the options that support gcov, and options ‘-a’ and ‘-ax’, which
write information to text files. The options that support gcov do not need to
instrument every arc in the program, so a program compiled with them runs
faster than a program compiled with ‘-a’, which adds instrumentation code
to every basic block in the program. The tradeoff: since gcov does not have
execution counts for all branches, it must start with the execution counts for
the instrumented branches, and then iterate over the program flow graph until
the entire graph has been solved. Hence, gcov runs a little more slowly than a
program which uses information from ‘-a’ and ‘-ax’.

With ‘-fprofile-arcs’, for each function of your program GCC creates a
program flow graph, then finds a spanning tree for the graph. Only arcs that
are not on the spanning tree have to be instrumented: the compiler adds code
to count the number of times that these arcs are executed. When an arc is
the only exit or only entrance to a block, the instrumentation code can be
added to the block; otherwise, a new basic block must be created to hold the
instrumentation code.

This option makes it possible to estimate branch probabilities and to calcu-
late basic block execution counts. In general, basic block execution counts as
provided by ‘-a’ do not give enough information to estimate all branch proba-
bilities.

-ftest-coverage

Create data files for the gcov code-coverage utility (see Chapter 8 [gcov: a
GCC Test Coverage Program]|, page 267). The data file names begin with the
name of your source file:

sourcename.bb
A mapping from basic blocks to line numbers, which gcov uses to
associate basic block execution counts with line numbers.

sourcename.bbg
A list of all arcs in the program flow graph. This allows gcov to
reconstruct the program flow graph, so that it can compute all
basic block and arc execution counts from the information in the
sourcename.da file.

Use ‘-ftest-coverage’ with ‘~fprofile-arcs’; the latter option adds instru-
mentation to the program, which then writes execution counts to another data
file:

sourcename.da
Runtime arc execution counts, used in conjunction with the arc
information in the file sourcename.bbg.

Coverage data will map better to the source files if ‘~ftest-coverage’ is used
without optimization.

Chapter 3:

—-dletters

GCC Command Options 47

Says to make debugging dumps during compilation at times specified by letters.
This is used for debugging the compiler. The file names for most of the dumps
are made by appending a pass number and a word to the source file name (e.g.
‘f00.¢.00.rtl’ or ‘foo.c.01.sibling’). Here are the possible letters for use
in letters, and their meanings:

Annotate the assembler output with miscellaneous debugging in-
formation.

Dump after computing branch probabilities, to ‘file. 14.bp’.
Dump after block reordering, to ‘file.29.bbro’.

Dump after instruction combination, to the file ‘file. 16.combine’.
Dump after the first if conversion, to the file ‘file.17.ce’.

Dump after delayed branch scheduling, to ‘file.31.dbr’.

Dump all macro definitions, at the end of preprocessing, in addition
to normal output.

Dump after SSA optimizations, to ‘file.04.ssa’ and ‘file.07 .ussa’.
Dump after the second if conversion, to ‘file.26.ce2’.

Dump after life analysis, to ‘file.15.1ife’.

Dump after purging ADDRESSOF codes, to ‘file.09.addressof’.
Dump after global register allocation, to ‘file.21.greg’.

Dump after finalization of EH handling code, to ‘file.02.eh’.
Dump after reg-to-stack conversion, to ‘file.28.stack’.

Dump after post-reload optimizations, to ‘file.22.postreload’.
Dump after GCSE, to ‘file.10.gcse’.

Dump after sibling call optimizations, to ‘file.01.sibling’.
Dump after the first jump optimization, to ‘file.03. jump’.

Dump after conversion from registers to stack, to ‘file.32.stack’.
Dump after local register allocation, to ‘file.20.1reg’ .

Dump after loop optimization, to ‘file.11.1loop’.

Dump after performing the machine dependent reorganisation pass,
to ‘file.30.mach’.

Dump after register renumbering, to ‘file.25.rnreg’.

Dump after the register move pass, to ‘file. 18.regmove’.
Dump after RTL generation, to ‘file.00.rtl’.

Dump after the second scheduling pass, to ‘file.27.sched2’.

Dump after CSE (including the jump optimization that sometimes
follows CSE), to ‘file.08.cse’.

48

Using the GNU Compiler Collection (GCC)

‘s’ Dump after the first scheduling pass, to ‘file.19.sched’.

‘v’ Dump after the second CSE pass (including the jump optimization
that sometimes follows CSE), to ‘file. 12.cse2’.

‘W Dump after the second flow pass, to ‘file.23.flow2’.

‘X’ Dump after SSA dead code elimination, to ‘file.06.ssadce’.

‘z’ Dump after the peephole pass, to ‘file.24.peephole2’.

‘a’ Produce all the dumps listed above.

‘m’ Print statistics on memory usage, at the end of the run, to standard
error.

‘p’ Annotate the assembler output with a comment indicating which

pattern and alternative was used. The length of each instruction is
also printed.

‘P’ Dump the RTL in the assembler output as a comment before each
instruction. Also turns on ‘-dp’ annotation.

v’ For each of the other indicated dump files (except for ‘file.00.rtl’),
dump a representation of the control flow graph suitable for viewing
with VCG to ‘file. pass.vcg’.

X Just generate RTL for a function instead of compiling it. Usually
used with ‘r’.

v Dump debugging information during parsing, to standard error.

—fdump-unnumbered

When doing debugging dumps (see ‘-d’ option above), suppress instruction
numbers and line number note output. This makes it more feasible to use
diff on debugging dumps for compiler invocations with different options, in

)

particular with and without ‘-g’.

-fdump-translation-unit (C and C++ only)
-fdump-translation-unit-options (C and C++ only)

Dump a representation of the tree structure for the entire translation unit to a
file. The file name is made by appending ‘.tu’ to the source file name. If the
‘~options’ form is used, options controls the details of the dump as described
for the ‘-fdump-tree’ options.

-fdump-class-hierarchy (C++ only)
-fdump-class-hierarchy-options (C++ only)

Dump a representation of each class’s hierarchy and virtual function table layout
to a file. The file name is made by appending ‘. class’ to the source file name. If
the ‘-—options’ form is used, options controls the details of the dump as described
for the ‘~fdump-tree’ options.

-fdump-tree-switch (C++ only)
-fdump-tree-switch-options (C++ only)

Control the dumping at various stages of processing the intermediate language
tree to a file. The file name is generated by appending a switch specific suffix

Chapter 3: GCC Command Options 49

to the source file name. If the ‘-—options’ form is used, options is a list of ‘=’

separated options that control the details of the dump. Not all options are
applicable to all dumps, those which are not meaningful will be ignored. The
following options are available

‘address’ Print the address of each node. Usually this is not meaningful as it
changes according to the environment and source file. Its primary
use is for tying up a dump file with a debug environment.

‘slim’ Inhibit dumping of members of a scope or body of a function merely
because that scope has been reached. Only dump such items when
they are directly reachable by some other path.

‘all’ Turn on all options.
The following tree dumps are possible:

‘original’
Dump before any tree based optimization, to ‘file.original’.

‘optimized’
Dump after all tree based optimization, to ‘file.optimized’.

‘inlined’ Dump after function inlining, to ‘file.inlined’.

-fpretend-float

When running a cross-compiler, pretend that the target machine uses the same
floating point format as the host machine. This causes incorrect output of the
actual floating constants, but the actual instruction sequence will probably be
the same as GCC would make when running on the target machine.

-save-temps

—-time

Store the usual “temporary” intermediate files permanently; place them in the
current directory and name them based on the source file. Thus, compiling
‘foo.c’ with ‘-¢ -save-temps’ would produce files ‘foo.1i” and ‘foo.s’, as well
as ‘foo.o’. This creates a preprocessed ‘foo.i’ output file even though the
compiler now normally uses an integrated preprocessor.

Report the CPU time taken by each subprocess in the compilation sequence.
For C source files, this is the compiler proper and assembler (plus the linker if
linking is done). The output looks like this:

ccl 0.12 0.01

as 0.00 0.01

The first number on each line is the “user time,” that is time spent executing
the program itself. The second number is “system time,” time spent executing
operating system routines on behalf of the program. Both numbers are in
seconds.

-print-file-name=library

Print the full absolute name of the library file library that would be used when
linking—and don’t do anything else. With this option, GCC does not compile
or link anything; it just prints the file name.

50 Using the GNU Compiler Collection (GCC)

-print-multi-directory
Print the directory name corresponding to the multilib selected by any other
switches present in the command line. This directory is supposed to exist in
GCC_EXEC_PREFIX.

-print-multi-1ib
Print the mapping from multilib directory names to compiler switches that
enable them. The directory name is separated from the switches by ‘;’, and
each switch starts with an ‘@’ instead of the ‘-’, without spaces between multiple
switches. This is supposed to ease shell-processing.

-print-prog-name=program
Like ‘-print-file-name’, but searches for a program such as ‘cpp’.

-print-libgcc-file-name
Same as ‘-print-file-name=libgcc.a’.
This is useful when you use ‘-nostdlib’ or ‘-nodefaultlibs’ but you do want
to link with ‘libgcc.a’. You can do
gcc -nostdlib files... ‘gcc -print-libgcc-file-name*

-print-search-dirs
Print the name of the configured installation directory and a list of program
and library directories gcc will search—and don’t do anything else.

This is useful when gcc prints the error message ‘installation problem,
cannot exec cpp0: No such file or directory’. To resolve this you either
need to put ‘cpp0’ and the other compiler components where geec expects to
find them, or you can set the environment variable GCC_EXEC_PREFIX to the di-
rectory where you installed them. Don’t forget the trailing ’/’. See Section 3.19
[Environment Variables|, page 145.

—dumpmachine
Print the compiler’s target machine (for example, ‘1686-pc-1linux-gnu’)—and
don’t do anything else.

—dumpversion
Print the compiler version (for example, ‘3.0’)—and don’t do anything else.

—dumpspecs
Print the compiler’s built-in specs—and don’t do anything else. (This is used
when GCC itself is being built.) See Section 3.15 [Spec Files|, page 73.

3.10 Options That Control Optimization

These options control various sorts of optimizations:

-0

-01 Optimize. Optimizing compilation takes somewhat more time, and a lot more
memory for a large function.
Without ‘-0’, the compiler’s goal is to reduce the cost of compilation and to
make debugging produce the expected results. Statements are independent:

Chapter 3:

-02

-03

-00
-0s

GCC Command Options 51

if you stop the program with a breakpoint between statements, you can then
assign a new value to any variable or change the program counter to any other
statement in the function and get exactly the results you would expect from
the source code.

With ‘-0’°, the compiler tries to reduce code size and execution time, without
performing any optimizations that take a great deal of compilation time.

Optimize even more. GCC performs nearly all supported optimizations that
do not involve a space-speed tradeoff. The compiler does not perform loop
unrolling or function inlining when you specify ‘-02’. As compared to ‘-0, this
option increases both compilation time and the performance of the generated
code.

‘-02’ turns on all optional optimizations except for loop unrolling, function
inlining, and register renaming. It also turns on the ‘-fforce-mem’ option on
all machines and frame pointer elimination on machines where doing so does
not interfere with debugging.

Please note the warning under ‘-fgcse’ about invoking ‘-~02’ on programs that
use computed gotos.

Optimize yet more. ‘=03’ turns on all optimizations specified by ‘-02’ and also
turns on the ‘-finline-functions’ and ‘-frename-registers’ options.

Do not optimize.

Optimize for size. ‘-0s’ enables all ‘-02’ optimizations that do not typically
increase code size. It also performs further optimizations designed to reduce
code size.

If you use multiple ‘-0’ options, with or without level numbers, the last such
option is the one that is effective.

Options of the form ‘-fflag’ specify machine-independent flags. Most flags have both
positive and negative forms; the negative form of ‘~ffoo’ would be ‘~fno-foo’. In the table
below, only one of the forms is listed—the one which is not the default. You can figure out
the other form by either removing ‘no-’ or adding it.

—-ffloat-store

Do not store floating point variables in registers, and inhibit other options that
might change whether a floating point value is taken from a register or memory.

This option prevents undesirable excess precision on machines such as the 68000
where the floating registers (of the 68881) keep more precision than a double
is supposed to have. Similarly for the x86 architecture. For most programs,
the excess precision does only good, but a few programs rely on the precise
definition of IEEE floating point. Use ‘~ffloat-store’ for such programs, after
modifying them to store all pertinent intermediate computations into variables.

-fno-default-inline

Do not make member functions inline by default merely because they are defined
inside the class scope (C++ only). Otherwise, when you specify ‘-0’, member
functions defined inside class scope are compiled inline by default; i.e., you don’t
need to add ‘inline’ in front of the member function name.

52 Using the GNU Compiler Collection (GCC)

-fno-defer-pop
Always pop the arguments to each function call as soon as that function returns.
For machines which must pop arguments after a function call, the compiler
normally lets arguments accumulate on the stack for several function calls and
pops them all at once.

—-fforce-mem
Force memory operands to be copied into registers before doing arithmetic on
them. This produces better code by making all memory references potential
common subexpressions. When they are not common subexpressions, instruc-
tion combination should eliminate the separate register-load. The ‘-~02’ option
turns on this option.

-fforce-addr
Force memory address constants to be copied into registers before doing arith-
metic on them. This may produce better code just as ‘~fforce-mem’ may.

-fomit-frame-pointer
Don’t keep the frame pointer in a register for functions that don’t need one.
This avoids the instructions to save, set up and restore frame pointers; it also
makes an extra register available in many functions. It also makes debugging
impossible on some machines.

On some machines, such as the VAX, this flag has no effect, because the stan-
dard calling sequence automatically handles the frame pointer and nothing is
saved by pretending it doesn’t exist. The machine-description macro FRAME_
POINTER_REQUIRED controls whether a target machine supports this flag. See
section “Register Usage” in GNU Compiler Collection (GCC) Internals.

-foptimize-sibling-calls
Optimize sibling and tail recursive calls.

-ftrapv This option generates traps for signed overflow on addition, subtraction, mul-
tiplication operations.

-fno-inline
Don’t pay attention to the inline keyword. Normally this option is used to
keep the compiler from expanding any functions inline. Note that if you are
not optimizing, no functions can be expanded inline.

-finline-functions
Integrate all simple functions into their callers. The compiler heuristically de-
cides which functions are simple enough to be worth integrating in this way.

If all calls to a given function are integrated, and the function is declared
static, then the function is normally not output as assembler code in its own
right.

-finline-limit=n
By default, gce limits the size of functions that can be inlined. This flag allows
the control of this limit for functions that are explicitly marked as inline (ie
marked with the inline keyword or defined within the class definition in c++).
n is the size of functions that can be inlined in number of pseudo instructions

Chapter 3: GCC Command Options 53

(not counting parameter handling). The default value of n is 600. Increasing
this value can result in more inlined code at the cost of compilation time and
memory consumption. Decreasing usually makes the compilation faster and less
code will be inlined (which presumably means slower programs). This option
is particularly useful for programs that use inlining heavily such as those based
on recursive templates with C++.

Note: pseudo instruction represents, in this particular context, an abstract
measurement of function’s size. In no way, it represents a count of assembly
instructions and as such its exact meaning might change from one release to an
another.

-fkeep-inline-functions
Even if all calls to a given function are integrated, and the function is declared
static, nevertheless output a separate run-time callable version of the function.
This switch does not affect extern inline functions.

-fkeep-static-consts
Emit variables declared static const when optimization isn’t turned on, even
if the variables aren’t referenced.

GCC enables this option by default. If you want to force the compiler to check if
the variable was referenced, regardless of whether or not optimization is turned
on, use the ‘~-fno-keep-static-consts’ option.

-fmerge-constants
Attempt to merge identical constants (string constants and floating point con-
stants) accross compilation units.

This option is default for optimized compilation if assembler and linker support
it. Use ‘~fno-merge-constants’ to inhibit this behavior.

-fmerge-all-constants
Attempt to merge identical constants and identical variables.

This option implies ‘~-fmerge-constants’. In addition to ‘~-fmerge-constants’
this considers e.g. even constant initialized arrays or initialized constant vari-
ables with integral or floating point types. Languages like C or C++ require
each non-automatic variable to have distinct location, so using this option will
result in non-conforming behavior.

-fno-function-cse
Do not put function addresses in registers; make each instruction that calls a
constant function contain the function’s address explicitly.

This option results in less efficient code, but some strange hacks that alter the
assembler output may be confused by the optimizations performed when this
option is not used.

-ffast-math
Sets ‘~fno-math-errno’, ‘-funsafe-math-optimizations’, and
‘~fno-trapping-math’.
This option causes the preprocessor macro __FAST_MATH__ to be defined.

54

Using the GNU Compiler Collection (GCC)

This option should never be turned on by any ‘-0’ option since it can result
in incorrect output for programs which depend on an exact implementation of
IEEE or ISO rules/specifications for math functions.

-fno-math-errno

Do not set ERRNO after calling math functions that are executed with a single
instruction, e.g., sqrt. A program that relies on IEEE exceptions for math error
handling may want to use this flag for speed while maintaining IEEE arithmetic
compatibility.

This option should never be turned on by any ‘-0’ option since it can result
in incorrect output for programs which depend on an exact implementation of
IEEE or ISO rules/specifications for math functions.

The default is ‘-fmath-errno’.

-funsafe-math-optimizations

Allow optimizations for floating-point arithmetic that (a) assume that argu-
ments and results are valid and (b) may violate IEEE or ANSI standards.
When used at link-time, it may include libraries or startup files that change the
default FPU control word or other similar optimizations.

This option should never be turned on by any ‘-0’ option since it can result
in incorrect output for programs which depend on an exact implementation of
IEEE or ISO rules/specifications for math functions.

The default is ‘~fno-unsafe-math-optimizations’.

-fno-trapping-math

Compile code assuming that floating-point operations cannot generate user-
visible traps. Setting this option may allow faster code if one relies on “non-
stop” IEEE arithmetic, for example.

This option should never be turned on by any ‘-0’ option since it can result
in incorrect output for programs which depend on an exact implementation of
IEEE or ISO rules/specifications for math functions.

The default is ‘~ftrapping-math’.

The following options control specific optimizations. The ‘-02’ option turns on all of

these optimizations except ‘-funroll-loops’ and ‘-funroll-all-loops’. On most ma-
chines, the ‘-0’ option turns on the ‘~fthread-jumps’ and ‘-fdelayed-branch’ options,
but specific machines may handle it differently.

You can use the following flags in the rare cases when “fine-tuning” of optimizations to

be performed is desired.

Not all of the optimizations performed by GCC have ‘-f’ options to control them.

-fstrength-reduce

Perform the optimizations of loop strength reduction and elimination of itera-
tion variables.

-fthread-jumps

Perform optimizations where we check to see if a jump branches to a location
where another comparison subsumed by the first is found. If so, the first branch

Chapter 3: GCC Command Options 55

is redirected to either the destination of the second branch or a point immedi-
ately following it, depending on whether the condition is known to be true or
false.

-fcse-follow-jumps
In common subexpression elimination, scan through jump instructions when
the target of the jump is not reached by any other path. For example, when
CSE encounters an if statement with an else clause, CSE will follow the jump
when the condition tested is false.

-fcse-skip-blocks
This is similar to ‘-fcse-follow-jumps’, but causes CSE to follow jumps which
conditionally skip over blocks. When CSE encounters a simple if statement
with no else clause, ‘-fcse-skip-blocks’ causes CSE to follow the jump around
the body of the if.

—-frerun-cse-after-loop
Re-run common subexpression elimination after loop optimizations has been
performed.

-frerun-loop-opt
Run the loop optimizer twice.

-fgcse Perform a global common subexpression elimination pass. This pass also per-
forms global constant and copy propagation.

Note: When compiling a program using computed gotos, a GCC extension,
you may get better runtime performance if you disable the global common
subexpression elmination pass by adding ‘-fno-gcse’ to the command line.

-fgcse—1m
When ‘-fgcse-1m’ is enabled, global common subexpression elimination will
attempt to move loads which are only killed by stores into themselves. This
allows a loop containing a load/store sequence to be changed to a load outside
the loop, and a copy/store within the loop.

-fgcse-sm
When ‘-fgcse-sm’ is enabled, A store motion pass is run after global common
subexpression elimination. This pass will attempt to move stores out of loops.
When used in conjunction with ‘-~fgcse-1m’, loops containing a load/store se-
quence can be changed to a load before the loop and a store after the loop.

-fdelete-null-pointer-checks
Use global dataflow analysis to identify and eliminate useless checks for null
pointers. The compiler assumes that dereferencing a null pointer would have
halted the program. If a pointer is checked after it has already been derefer-
enced, it cannot be null.

In some environments, this assumption is not true, and programs can safely
dereference null pointers. Use ‘~fno-delete-null-pointer-checks’ to disable
this optimization for programs which depend on that behavior.

-fexpensive-optimizations
Perform a number of minor optimizations that are relatively expensive.

56

Using the GNU Compiler Collection (GCC)

-foptimize-register-move

-fregmove

Attempt to reassign register numbers in move instructions and as operands of
other simple instructions in order to maximize the amount of register tying.
This is especially helpful on machines with two-operand instructions. GCC
enables this optimization by default with ‘-02’ or higher.

Note ‘-fregmove’ and ‘-foptimize-register-move’ are the same optimiza-
tion.

-fdelayed-branch

If supported for the target machine, attempt to reorder instructions to exploit
instruction slots available after delayed branch instructions.

—-fschedule-insns

If supported for the target machine, attempt to reorder instructions to eliminate
execution stalls due to required data being unavailable. This helps machines
that have slow floating point or memory load instructions by allowing other
instructions to be issued until the result of the load or floating point instruction
is required.

—-fschedule-insns?2

Similar to ‘~-fschedule-insns’, but requests an additional pass of instruction
scheduling after register allocation has been done. This is especially useful on
machines with a relatively small number of registers and where memory load
instructions take more than one cycle.

—-ffunction—-sections
-fdata-sections

Place each function or data item into its own section in the output file if the
target supports arbitrary sections. The name of the function or the name of
the data item determines the section’s name in the output file.

Use these options on systems where the linker can perform optimizations to im-
prove locality of reference in the instruction space. HPPA processors running
HP-UX and Sparc processors running Solaris 2 have linkers with such optimiza-
tions. Other systems using the ELF object format as well as AIX may have
these optimizations in the future.

Only use these options when there are significant benefits from doing so. When
you specify these options, the assembler and linker will create larger object and
executable files and will also be slower. You will not be able to use gprof on all
systems if you specify this option and you may have problems with debugging

9y

if you specify both this option and ‘-g’.

-fcaller-saves

Enable values to be allocated in registers that will be clobbered by function
calls, by emitting extra instructions to save and restore the registers around
such calls. Such allocation is done only when it seems to result in better code
than would otherwise be produced.

This option is always enabled by default on certain machines, usually those
which have no call-preserved registers to use instead.

Chapter 3: GCC Command Options 57

For all machines, optimization level 2 and higher enables this flag by default.

-funroll-loops
Unroll loops whose number of iterations can be determined at compile time or
upon entry to the loop. ‘-funroll-loops’ implies both ‘-fstrength-reduce’
and ‘-frerun-cse-after-loop’. This option makes code larger, and may or
may not make it run faster.

-funroll-all-loops
Unroll all loops, even if their number of iterations is uncertain when the loop is
entered. This usually makes programs run more slowly. ‘~funroll-all-loops’
implies the same options as ‘-funroll-loops’,

-fprefetch-loop-arrays
If supported by the target machine, generate instructions to prefetch memory
to improve the performance of loops that access large arrays.

-fmove-all-movables
Forces all invariant computations in loops to be moved outside the loop.

-freduce-all-givs
Forces all general-induction variables in loops to be strength-reduced.

Note: When compiling programs written in Fortran, ‘~fmove-all-movables’
and ‘~freduce-all-givs’ are enabled by default when you use the optimizer.

These options may generate better or worse code; results are highly dependent
on the structure of loops within the source code.

These two options are intended to be removed someday, once they have helped
determine the efficacy of various approaches to improving loop optimizations.

Please let us (gcc@gec. gnu.org and fortran@gnu.org) know how use of these
options affects the performance of your production code. We’re very interested
in code that runs slower when these options are enabled.

-fno-peephole

-fno-peephole?2
Disable any machine-specific peephole optimizations. The difference between
‘~fno-peephole’ and ‘~fno-peephole2’ is in how they are implemented in the
compiler; some targets use one, some use the other, a few use both.

—-fbranch-probabilities

After running a program compiled with ‘~fprofile-arcs’ (see Section 3.9 [Op-
tions for Debugging Your Program or gccl, page 43), you can compile it a sec-
ond time using ‘-fbranch-probabilities’, to improve optimizations based
on the number of times each branch was taken. When the program com-
piled with ‘-fprofile-arcs’ exits it saves arc execution counts to a file called
‘sourcename.da’ for each source file The information in this data file is very
dependent on the structure of the generated code, so you must use the same
source code and the same optimization options for both compilations.

With ‘-fbranch-probabilities’, GCC puts a ‘REG_EXEC_COUNT’ note on
the first instruction of each basic block, and a ‘REG_BR_PROB’ note on each
‘JUMP_INSN’ and ‘CALL_INSN’. These can be used to improve optimization.

58 Using the GNU Compiler Collection (GCC)

Currently, they are only used in one place: in ‘reorg.c’, instead of guessing
which path a branch is mostly to take, the ‘REG_BR_PROB’ values are used to
exactly determine which path is taken more often.

-fno-guess-branch-probability
Do not guess branch probabilities using a randomized model.

Sometimes gcc will opt to use a randomized model to guess branch probabilities,
when none are available from either profiling feedback (‘-fprofile-arcs’) or
‘__builtin_expect’. This means that different runs of the compiler on the
same program may produce different object code.

In a hard real-time system, people don’t want different runs of the compiler
to produce code that has different behavior; minimizing non-determinism is
of paramount import. This switch allows users to reduce non-determinism,
possibly at the expense of inferior optimization.

-fstrict-aliasing
Allows the compiler to assume the strictest aliasing rules applicable to the
language being compiled. For C (and C++), this activates optimizations based
on the type of expressions. In particular, an object of one type is assumed never
to reside at the same address as an object of a different type, unless the types
are almost the same. For example, an unsigned int can alias an int, but not
a void* or a double. A character type may alias any other type.

Pay special attention to code like this:

union a_union {
int i;
double d;

}s;

int £ {
a_union t;
t.d = 3.0;
return t.i;

¥

The practice of reading from a different union member than the one
most recently written to (called “type-punning”) is common. Even with
‘~fstrict-aliasing’, type-punning is allowed, provided the memory is
accessed through the union type. So, the code above will work as expected.
However, this code might not:

int £0O {
a_union t;
int* ip;
t.d = 3.0;
ip = &t.1i;
return *ip;

¥

Every language that wishes to perform language-specific alias analysis should
define a function that computes, given an tree node, an alias set for the node.

Chapter 3: GCC Command Options 59

Nodes in different alias sets are not allowed to alias. For an example, see the C
front-end function c_get_alias_set.

-falign-functions
-falign-functions=n

Align the start of functions to the next power-of-two greater than n, skipping
up to n bytes. For instance, ‘-falign-functions=32’ aligns functions to the
next 32-byte boundary, but ‘~-falign-functions=24’ would align to the next
32-byte boundary only if this can be done by skipping 23 bytes or less.

‘-fno-align-functions’ and ‘-falign-functions=1" are equivalent and mean
that functions will not be aligned.

Some assemblers only support this flag when n is a power of two; in that case,
it is rounded up.

If n is not specified, use a machine-dependent default.

-falign-labels
-falign-labels=n

Align all branch targets to a power-of-two boundary, skipping up to n bytes
like ‘-falign-functions’. This option can easily make code slower, because
it must insert dummy operations for when the branch target is reached in the
usual flow of the code.

If ‘-falign-loops’ or ‘~falign-jumps’ are applicable and are greater than this
value, then their values are used instead.

If n is not specified, use a machine-dependent default which is very likely to be
‘1’, meaning no alignment.

-falign-loops
-falign-loops=n

Align loops to a power-of-two boundary, skipping up to n bytes like
‘~falign-functions’. The hope is that the loop will be executed many times,
which will make up for any execution of the dummy operations.

If n is not specified, use a machine-dependent default.

—-falign—-jumps
-falign-jumps=n

-fssa

-fssa-ccp

Align branch targets to a power-of-two boundary, for branch targets where
the targets can only be reached by jumping, skipping up to n bytes like
‘~falign-functions’. In this case, no dummy operations need be executed.

If n is not specified, use a machine-dependent default.

Perform optimizations in static single assignment form. Each function’s flow
graph is translated into SSA form, optimizations are performed, and the flow
graph is translated back from SSA form. Users should not specify this option,
since it is not yet ready for production use.

Perform Sparse Conditional Constant Propagation in SSA form. Requires
‘~-fssa’. Like ‘-fssa’, this is an experimental feature.

60 Using the GNU Compiler Collection (GCC)

-fssa-dce
Perform aggressive dead-code elimination in SSA form. Requires ‘~fssa’. Like
‘~-fssa’, this is an experimental feature.

-fsingle-precision-constant
Treat floating point constant as single precision constant instead of implicitly
converting it to double precision constant.

-frename-registers
Attempt to avoid false dependencies in scheduled code by making use of reg-
isters left over after register allocation. This optimization will most benefit
processors with lots of registers. It can, however, make debugging impossible,
since variables will no longer stay in a “home register”.

-fno-cprop-registers
After register allocation and post-register allocation instruction splitting, we
perform a copy-propagation pass to try to reduce scheduling dependencies and
occasionally eliminate the copy.

--param name=value
In some places, GCC uses various constants to control the amount of optimiza-
tion that is done. For example, GCC will not inline functions that contain more
that a certain number of instructions. You can control some of these constants
on the command-line using the ‘--param’ option.

In each case, the value is an integer. The allowable choices for name are given
in the following table:

max-delay-slot-insn-search
The maximum number of instructions to consider when looking for
an instruction to fill a delay slot. If more than this arbitrary number
of instructions is searched, the time savings from filling the delay
slot will be minimal so stop searching. Increasing values mean
more aggressive optimization, making the compile time increase
with probably small improvement in executable run time.

max-delay-slot-live-search
When trying to fill delay slots, the maximum number of instruc-
tions to consider when searching for a block with valid live register
information. Increasing this arbitrarily chosen value means more
aggressive optimization, increasing the compile time. This param-
eter should be removed when the delay slot code is rewritten to
maintain the control-flow graph.

max-gcse-memory
The approximate maximum amount of memory that will be allo-
cated in order to perform the global common subexpression elim-
ination optimization. If more memory than specified is required,
the optimization will not be done.

max-gcse-passes
The maximum number of passes of GCSE to run.

Chapter 3: GCC Command Options 61

max-pending-list-length
The maximum number of pending dependencies scheduling will al-
low before flushing the current state and starting over. Large func-
tions with few branches or calls can create excessively large lists
which needlessly consume memory and resources.

max-inline-insns
If an function contains more than this many instructions, it will not
be inlined. This option is precisely equivalent to ‘~finline-1limit’.

3.11 Options Controlling the Preprocessor

These options control the C preprocessor, which is run on each C source file before actual
compilation.

If you use the ‘-E’ option, nothing is done except preprocessing. Some of these op-
tions make sense only together with ‘-E’ because they cause the preprocessor output to be
unsuitable for actual compilation.

You can use ‘~Wp,option’ to bypass the compiler driver and pass option directly through
to the preprocessor. If option contains commas, it is split into multiple options at the
commas. However, many options are modified, translated or interpreted by the compiler
driver before being passed to the preprocessor, and ‘-Wp’ forcibly bypasses this phase. The
preprocessor’s direct interface is undocumented and subject to change, so whenever possible
you should avoid using ‘-Wp’ and let the driver handle the options instead.

-D name Predefine name as a macro, with definition 1.

-D name=definition
Predefine name as a macro, with definition definition. There are no restrictions
on the contents of definition, but if you are invoking the preprocessor from a
shell or shell-like program you may need to use the shell’s quoting syntax to
protect characters such as spaces that have a meaning in the shell syntax.

If you wish to define a function-like macro on the command line, write its
argument list with surrounding parentheses before the equals sign (if any).
Parentheses are meaningful to most shells, so you will need to quote the option.
With sh and csh, ‘-D’name(args. . .)=definition’’ works.

‘-D” and ‘-U’ options are processed in the order they are given on the command
line. All ‘-imacros file’ and ‘-include file’ options are processed after all ‘-D’
and ‘-U’ options.

-U name Cancel any previous definition of name, either built in or provided with a ‘-D’
option.

-undef Do not predefine any system-specific macros. The common predefined macros
remain defined.

-1 dir Add the directory dir to the list of directories to be searched for header files.
Directories named by ‘-I’ are searched before the standard system include di-
rectories.

62 Using the GNU Compiler Collection (GCC)

It is dangerous to specify a standard system include directory in an ‘-1’ option.
This defeats the special treatment of system headers . It can also defeat the
repairs to buggy system headers which GCC makes when it is installed.

-o file Write output to file. This is the same as specifying file as the second non-option
argument to cpp. gcc has a different interpretation of a second non-option
argument, so you must use ‘-0’ to specify the output file.

-Wall Turns on all optional warnings which are desirable for normal code. At present
this is ‘-Wcomment’ and ‘-Wtrigraphs’. Note that many of the preprocessor’s
warnings are on by default and have no options to control them.

-Wcomment

-Wcomments
Warn whenever a comment-start sequence ‘/*’ appears in a ‘/*’ comment, or
whenever a backslash-newline appears in a ‘//’ comment. (Both forms have
the same effect.)

-Wtrigraphs
Warn if any trigraphs are encountered. This option used to take effect only if
‘~trigraphs’ was also specified, but now works independently. Warnings are
not given for trigraphs within comments, as they do not affect the meaning of
the program.

-Wtraditiomnal
Warn about certain constructs that behave differently in traditional and ISO
C. Also warn about ISO C constructs that have no traditional C equivalent,
and problematic constructs which should be avoided.

-Wimport Warn the first time ‘#import’ is used.

-Wundef Warn whenever an identifier which is not a macro is encountered in an ‘#if’
directive, outside of ‘defined’. Such identifiers are replaced with zero.

-Werror Make all warnings into hard errors. Source code which triggers warnings will
be rejected.

-Wsystem-headers
Issue warnings for code in system headers. These are normally unhelpful in
finding bugs in your own code, therefore suppressed. If you are responsible for
the system library, you may want to see them.

-W Suppress all warnings, including those which GNU CPP issues by default.

-pedantic
Issue all the mandatory diagnostics listed in the C standard. Some of them are
left out by default, since they trigger frequently on harmless code.

-pedantic-errors
Issue all the mandatory diagnostics, and make all mandatory diagnostics
into errors. This includes mandatory diagnostics that GCC issues without
‘-pedantic’ but treats as warnings.

-M Instead of outputting the result of preprocessing, output a rule suitable for make
describing the dependencies of the main source file. The preprocessor outputs

Chapter 3: GCC Command Options 63

-MM

-MF file

-MP

-MT target

one make rule containing the object file name for that source file, a colon, and
the names of all the included files, including those coming from ‘-include’ or
‘-imacros’ command line options.

Unless specified explicitly (with ‘-MT’ or ‘-MQ’), the object file name consists of
the basename of the source file with any suffix replaced with object file suffix.
If there are many included files then the rule is split into several lines using
‘\N’-newline. The rule has no commands.

This option does not suppress the preprocessor’s debug output, such as ‘-dM’.
To avoid mixing such debug output with the dependency rules you should
explicitly specify the dependency output file with ‘-MF’, or use an environ-
ment variable like DEPENDENCIES_OUTPUT (see [DEPENDENCIES_OUTPUT],
page 147). Debug output will still be sent to the regular output stream as
normal.

Passing ‘-M’ to the driver implies ‘-E’.

Like ‘-M’ but do not mention header files that are found in system header
directories, nor header files that are included, directly or indirectly, from such
a header.

This implies that the choice of angle brackets or double quotes in an ‘#include’
directive does not in itself determine whether that header will appear in ‘-MM’
dependency output. This is a slight change in semantics from GCC versions
3.0 and earlier.

When used with ‘=M’ or ‘-MM’, specifies a file to write the dependencies to. If
no ‘-MF’ switch is given the preprocessor sends the rules to the same place it
would have sent preprocessed output.

When used with the driver options ‘-MD’ or ‘-MMD’, ‘-MF’ overrides the default
dependency output file.

When used with ‘-M’ or ‘-MM’, ‘MG’ says to treat missing header files as gen-
erated files and assume they live in the same directory as the source file. It
suppresses preprocessed output, as a missing header file is ordinarily an error.

This feature is used in automatic updating of makefiles.

This option instructs CPP to add a phony target for each dependency other
than the main file, causing each to depend on nothing. These dummy rules
work around errors make gives if you remove header files without updating the
‘Makefile’ to match.

This is typical output:
test.o: test.c test.h

test.h:

Change the target of the rule emitted by dependency generation. By default
CPP takes the name of the main input file, including any path, deletes any file
suffix such as ‘.c’, and appends the platform’s usual object suffix. The result
is the target.

64

-MQ target

-MD

-MMD

X C
-X c++

Using the GNU Compiler Collection (GCC)

An ‘-MT’ option will set the target to be exactly the string you specify. If you
want multiple targets, you can specify them as a single argument to ‘-MT’, or
use multiple ‘-MT’ options.
For example, ‘-MT ’$(objpfx)foo.0’’ might give

$(objpfx)foo.o: foo.c

Same as ‘-MT’, but it quotes any characters which are special to Make.
‘-MQ *$(objpfx)foo.0’’ gives

$$(objpfx)foo.0: foo.c
The default target is automatically quoted, as if it were given with ‘-MQ’.
‘-MD’ is equivalent to ‘-M -MF file’, except that ‘~E’ is not implied. The driver
determines file based on whether an ‘-0’ option is given. If it is, the driver uses
its argument but with a suffix of ‘.d’, otherwise it take the basename of the
input file and applies a ‘.d’ suffix.

If ‘-MD’ is used in conjunction with ‘-E’, any ‘-o’ switch is understood to specify
the dependency output file (but see [-MF], page 63), but if used without ‘-E’,
each ‘-0’ is understood to specify a target object file.

Since ‘-E’ is not implied, ‘-MD’ can be used to generate a dependency output
file as a side-effect of the compilation process.

Like ‘-MD’ except mention only user header files, not system -header files.

-X objective-c
-x assembler-with-cpp

Specify the source language: C, C++, Objective-C, or assembly. This has noth-
ing to do with standards conformance or extensions; it merely selects which
base syntax to expect. If you give none of these options, cpp will deduce the
language from the extension of the source file: ‘.c’, ‘.cc’, *.m’, or ‘.8’. Some
other common extensions for C++ and assembly are also recognized. If cpp does
not recognize the extension, it will treat the file as C; this is the most generic

mode.
Note: Previous versions of cpp accepted a ‘~lang’ option which selected both

the language and the standards conformance level. This option has been re-
moved, because it conflicts with the ‘-1’ option.

-std=standard

—ansi

Specify the standard to which the code should conform. Currently cpp only
knows about the standards for C; other language standards will be added in
the future.

standard may be one of:
1is09899:1990

c89 The ISO C standard from 1990. ‘c89’ is the customary shorthand
for this version of the standard.

The ‘-ansi’ option is equivalent to ‘-std=c89’.

Chapter 3: GCC Command Options 65

1s09899:199409
The 1990 C standard, as amended in 1994.

1509899:1999

c99

is09899:199x

c9x The revised ISO C standard, published in December 1999. Before
publication, this was known as C9X.

gnu89 The 1990 C standard plus GNU extensions. This is the default.

gnu99

gnu9x The 1999 C standard plus GNU extensions.

-I- Split the include path. Any directories specified with ‘I’ options before ‘-I-’
are searched only for headers requested with #include "file"; they are not
searched for #include <file>. If additional directories are specified with ‘-1’
options after the ‘-I-’, those directories are searched for all ‘#include’ direc-
tives.

In addition, ‘-I-’ inhibits the use of the directory of the current file directory
as the first search directory for #include "file".

-nostdinc
Do not search the standard system directories for header files. Only the direc-
tories you have specified with ‘-I’ options (and the directory of the current file,
if appropriate) are searched.

-nostdinc++

Do not search for header files in the C++-specific standard directories, but do
still search the other standard directories. (This option is used when building
the C++ library.)

-include file

Process file as if #include "file" appeared as the first line of the primary
source file. However, the first directory searched for file is the preprocessor’s
working directory instead of the directory containing the main source file. If
not found there, it is searched for in the remainder of the #include "..."
search chain as normal.

If multiple ‘-include’ options are given, the files are included in the order they
appear on the command line.

-imacros file

Exactly like ‘-include’, except that any output produced by scanning file is
thrown away. Macros it defines remain defined. This allows you to acquire all
the macros from a header without also processing its declarations.

All files specified by ‘-imacros’ are processed before all files specified by
‘-include’.

-idirafter dir

Search dir for header files, but do it after all directories specified with ‘-1’ and
the standard system directories have been exhausted. dir is treated as a system
include directory.

66 Using the GNU Compiler Collection (GCC)

-iprefix prefix
Specify prefix as the prefix for subsequent ‘-~iwithprefix’ options. If the prefix
represents a directory, you should include the final /.

-iwithprefix dir

-iwithprefixbefore dir
Append dir to the prefix specified previously with ‘-iprefix’, and add the
resulting directory to the include search path. ‘-~iwithprefixbefore’ puts it
in the same place ‘-1’ would; ‘-iwithprefix’ puts it where ‘-idirafter’ would.

Use of these options is discouraged.

-isystem dir
Search dir for header files, after all directories specified by ‘-I’ but before the
standard system directories. Mark it as a system directory, so that it gets the
same special treatment as is applied to the standard system directories.

-fpreprocessed
Indicate to the preprocessor that the input file has already been preprocessed.
This suppresses things like macro expansion, trigraph conversion, escaped new-
line splicing, and processing of most directives. The preprocessor still recognizes
and removes comments, so that you can pass a file preprocessed with ‘-C’ to the
compiler without problems. In this mode the integrated preprocessor is little
more than a tokenizer for the front ends.

‘~fpreprocessed’ is implicit if the input file has one of the extensions ‘.i’,

“.ii’ or ‘.mi’. These are the extensions that GCC uses for preprocessed files
created by ‘-save-temps’.

-ftabstop=width
Set the distance between tab stops. This helps the preprocessor report correct
column numbers in warnings or errors, even if tabs appear on the line. If the
value is less than 1 or greater than 100, the option is ignored. The default is 8.

-fno-show-column
Do not print column numbers in diagnostics. This may be necessary if diag-
nostics are being scanned by a program that does not understand the column
numbers, such as dejagnu.

-A predicate=answer
Make an assertion with the predicate predicate and answer answer. This form
is preferred to the older form ‘-A predicate (answer)’, which is still supported,
because it does not use shell special characters.

-A -predicate=answer
Cancel an assertion with the predicate predicate and answer answer.

-A- Cancel all predefined assertions and all assertions preceding it on the command
line. Also, undefine all predefined macros and all macros preceding it on the
command line. (This is a historical wart and may change in the future.)

-dCHARS CHARS is a sequence of one or more of the following characters, and must
not be preceded by a space. Other characters are interpreted by the compiler

Chapter 3: GCC Command Options 67

-gcc

proper, or reserved for future versions of GCC, and so are silently ignored. If
you specify characters whose behavior conflicts, the result is undefined.

‘™ Instead of the normal output, generate a list of ‘#define’ directives
for all the macros defined during the execution of the preprocessor,
including predefined macros. This gives you a way of finding out
what is predefined in your version of the preprocessor. Assuming
you have no file ‘foo.h’, the command

touch foo.h; cpp -dM foo.h

will show all the predefined macros.

‘D’ Like ‘M’ except in two respects: it does not include the predefined
macros, and it outputs both the ‘#define’ directives and the result
of preprocessing. Both kinds of output go to the standard output
file.

‘N’ Like ‘D’, but emit only the macro names, not their expansions.

‘T Output ‘#include’ directives in addition to the result of prepro-
cessing.

Inhibit generation of linemarkers in the output from the preprocessor. This
might be useful when running the preprocessor on something that is not C code,
and will be sent to a program which might be confused by the linemarkers.

Do not discard comments. All comments are passed through to the output file,
except for comments in processed directives, which are deleted along with the
directive.

You should be prepared for side effects when using ‘-C’; it causes the prepro-
cessor to treat comments as tokens in their own right. For example, comments
appearing at the start of what would be a directive line have the effect of turn-
ing that line into an ordinary source line, since the first token on the line is no
longer a ‘#’.

Define the macros __GNUC__, __GNUC_MINOR__ and __GNUC_PATCHLEVEL__.
These are defined automatically when you use gcc -E; you can turn them off
in that case with ‘-no-gcc’.

-traditional

-trigraphs

Try to imitate the behavior of old-fashioned C, as opposed to ISO C.

Process trigraph sequences. These are three-character sequences, all starting
with ‘7?7’ that are defined by ISO C to stand for single characters. For example,
“??7/’ stands for ‘\’, so ‘> ??/n’’ is a character constant for a newline. By default,
GCC ignores trigraphs, but in standard-conforming modes it converts them. See
the ‘-std’ and ‘-ansi’ options.

The nine trigraphs and their replacements are
Trigraph: ??7(?7) 7P ??> ??= 7?7/ 7?7?7770 77—
Replacement: [] { } # \ - -

68 Using the GNU Compiler Collection (GCC)

-remap Enable special code to work around file systems which only permit very short
file names, such as MS-DOS.

-$ Forbid the use of ‘4’ in identifiers. The C standard allows implementations to
define extra characters that can appear in identifiers. By default GNU CPP
permits ‘$’, a common extension.

-h

--help

--target-help
Print text describing all the command line options instead of preprocessing
anything.

-v Verbose mode. Print out GNU CPP’s version number at the beginning of
execution, and report the final form of the include path.

-H Print the name of each header file used, in addition to other normal activities.
Each name is indented to show how deep in the ‘#include’ stack it is.

-version

--version
Print out GNU CPP’s version number. With one dash, proceed to preprocess
as normal. With two dashes, exit immediately.

3.12 Passing Options to the Assembler

You can pass options to the assembler.

-Wa, option
Pass option as an option to the assembler. If option contains commas, it is split
into multiple options at the commas.

3.13 Options for Linking

These options come into play when the compiler links object files into an executable
output file. They are meaningless if the compiler is not doing a link step.

object-file-name
A file name that does not end in a special recognized suffix is considered to
name an object file or library. (Object files are distinguished from libraries by
the linker according to the file contents.) If linking is done, these object files
are used as input to the linker.

-c

-S

-E If any of these options is used, then the linker is not run, and object file names
should not be used as arguments. See Section 3.2 [Overall Options]|, page 16.

-1library

-1 library Search the library named library when linking. (The second alternative with
the library as a separate argument is only for POSIX compliance and is not
recommended.)

Chapter 3: GCC Command Options 69

-lobjc

It makes a difference where in the command you write this option; the linker
searches and processes libraries and object files in the order they are speci-
fied. Thus, ‘foo.o -1z bar.o’ searches library ‘z’ after file ‘foo.0o’ but before
‘bar.o’. If ‘bar.o’ refers to functions in ‘z’, those functions may not be loaded.

The linker searches a standard list of directories for the library, which is actually
a file named ‘liblibrary.a’. The linker then uses this file as if it had been
specified precisely by name.

The directories searched include several standard system directories plus any
that you specify with ‘-L’.

Normally the files found this way are library files—archive files whose members
are object files. The linker handles an archive file by scanning through it for
members which define symbols that have so far been referenced but not defined.
But if the file that is found is an ordinary object file, it is linked in the usual
fashion. The only difference between using an ‘-1’ option and specifying a file
name is that ‘-1’ surrounds library with ‘1lib’ and ‘.a’ and searches several
directories.

You need this special case of the ‘-1’ option in order to link an Objective-C
program.

-nostartfiles

Do not use the standard system startup files when linking. The standard system
libraries are used normally, unless ‘-nostdlib’ or ‘-nodefaultlibs’ is used.

-nodefaultlibs

-nostdlib

Do not use the standard system libraries when linking. Only the libraries you
specify will be passed to the linker. The standard startup files are used normally,
unless ‘-nostartfiles’ is used. The compiler may generate calls to memcmp,
memset, and memcpy for System V (and ISO C) environments or to bcopy and
bzero for BSD environments. These entries are usually resolved by entries in
libc. These entry points should be supplied through some other mechanism
when this option is specified.

Do not use the standard system startup files or libraries when linking. No
startup files and only the libraries you specify will be passed to the linker. The
compiler may generate calls to memcmp, memset, and memcpy for System V
(and ISO C) environments or to bcopy and bzero for BSD environments. These
entries are usually resolved by entries in libc. These entry points should be
supplied through some other mechanism when this option is specified.

One of the standard libraries bypassed by ‘-nostdlib’ and ‘-nodefaultlibs’
is ‘libgcc.a’, a library of internal subroutines that GCC uses to overcome
shortcomings of particular machines, or special needs for some languages. (See
section “Interfacing to GCC Output” in GNU Compiler Collection (GCC) In-
ternals, for more discussion of ‘libgcc.a’.) In most cases, you need ‘libgcc.a’
even when you want to avoid other standard libraries. In other words, when you
specify ‘-nostdlib’ or ‘-nodefaultlibs’ you should usually specify ‘~1gcc’ as
well. This ensures that you have no unresolved references to internal GCC

70

-static

—-shared

Using the GNU Compiler Collection (GCC)

library subroutines. (For example, ‘__main’, used to ensure C++ constructors
will be called; see section “collect2” in GNU Compiler Collection (GCC) In-
ternals.)

Remove all symbol table and relocation information from the executable.

On systems that support dynamic linking, this prevents linking with the shared
libraries. On other systems, this option has no effect.

Produce a shared object which can then be linked with other objects to form
an executable. Not all systems support this option. For predictable results,
you must also specify the same set of options that were used to generate code
(‘-fpic’, ‘-fPIC’, or model suboptions) when you specify this option.!

-shared-1libgcc
-static-libgcc

-symbolic

On systems that provide ‘libgcc’ as a shared library, these options force the
use of either the shared or static version respectively. If no shared version of
‘libgcc’ was built when the compiler was configured, these options have no
effect.

There are several situations in which an application should use the shared
‘libgcc’ instead of the static version. The most common of these is when
the application wishes to throw and catch exceptions across different shared li-
braries. In that case, each of the libraries as well as the application itself should
use the shared ‘1ibgcc’.

Therefore, the G++ and GCJ drivers automatically add ‘-shared-libgcc’
whenever you build a shared library or a main executable, because C++ and
Java programs typically use exceptions, so this is the right thing to do.

If, instead, you use the GCC driver to create shared libraries, you may find
that they will not always be linked with the shared ‘libgcc’. If GCC finds,
at its configuration time, that you have a GNU linker that does not support
option ‘-—eh-frame-hdr’, it will link the shared version of ‘1ibgcc’ into shared
libraries by default. Otherwise, it will take advantage of the linker and optimize
away the linking with the shared version of ‘libgcc’, linking with the static
version of libgce by default. This allows exceptions to propagate through such
shared libraries, without incurring relocation costs at library load time.

However, if a library or main executable is supposed to throw or catch excep-
tions, you must link it using the G++ or GCJ driver, as appropriate for the
languages used in the program, or using the option ‘-shared-libgcc’, such
that it is linked with the shared ‘libgcc’.

Bind references to global symbols when building a shared object. Warn about
any unresolved references (unless overridden by the link editor option ‘~Xlinker
-z -Xlinker defs’). Only a few systems support this option.

1 On some systems, ‘gcc —shared’ needs to build supplementary stub code for constructors to work. On
multi-libbed systems, ‘gcc -shared’ must select the correct support libraries to link against. Failing to
supply the correct flags may lead to subtle defects. Supplying them in cases where they are not necessary
is innocuous.

Chapter 3: GCC Command Options 71

-Xlinker option

-W1,option

-u symbol

Pass option as an option to the linker. You can use this to supply system-specific
linker options which GCC does not know how to recognize.

If you want to pass an option that takes an argument, you must use ‘-Xlinker’
twice, once for the option and once for the argument. For example, to
pass ‘-assert definitions’, you must write ‘~Xlinker -assert -Xlinker
definitions’. It does not work to write ‘-X1inker "-assert definitions"’,
because this passes the entire string as a single argument, which is not what

the linker expects.

Pass option as an option to the linker. If option contains commas, it is split
into multiple options at the commas.

Pretend the symbol symbol is undefined, to force linking of library modules
to define it. You can use ‘-u’ multiple times with different symbols to force
loading of additional library modules.

3.14 Options for Directory Search

These options specify directories to search for header files, for libraries and for parts of
the compiler:

-1dir

Add the directory dir to the head of the list of directories to be searched for
header files. This can be used to override a system header file, substituting
your own version, since these directories are searched before the system header
file directories. However, you should not use this option to add directories that
contain vendor-supplied system header files (use ‘-isystem’ for that). If you
use more than one ‘-I’ option, the directories are scanned in left-to-right order;
the standard system directories come after.

If a standard system include directory, or a directory specified with ‘-isystem’,
is also specified with ‘-I’, it will be searched only in the position requested
by ‘-I’. Also, it will not be considered a system include directory. If that
directory really does contain system headers, there is a good chance that they
will break. For instance, if GCC’s installation procedure edited the headers in
‘/usr/include’ to fix bugs, ‘-I/usr/include’ will cause the original, buggy
headers to be found instead of the corrected ones. GCC will issue a warning
when a system include directory is hidden in this way.

Any directories you specify with ‘-=I” options before the ‘-~I-’ option are searched
only for the case of ‘#include "file"’; they are not searched for ‘#include
<file>’.

If additional directories are specified with ‘-1’ options after the ‘-I-’, these
directories are searched for all ‘#include’ directives. (Ordinarily all ‘-I’ direc-
tories are used this way.)

In addition, the ‘~-I-’ option inhibits the use of the current directory (where the
current input file came from) as the first search directory for ‘#include "file"’.
There is no way to override this effect of ‘-I-’. With ‘-I.’ you can specify

72

-Ldir

-Bprefix

-specs=file

Using the GNU Compiler Collection (GCC)

searching the directory which was current when the compiler was invoked. That
is not exactly the same as what the preprocessor does by default, but it is often
satisfactory.

‘~I-’ does not inhibit the use of the standard system directories for header files.
Thus, ‘-I-’ and ‘-nostdinc’ are independent.

Add directory dir to the list of directories to be searched for ‘-1’

This option specifies where to find the executables, libraries, include files, and
data files of the compiler itself.

The compiler driver program runs one or more of the subprograms ‘cpp’, ‘ccl’,
‘as’ and ‘1d’. It tries prefix as a prefix for each program it tries to run, both with
and without ‘machine/version/’ (see Section 3.16 [Target Options], page 79).

For each subprogram to be run, the compiler driver first tries the ‘-B’
prefix, if any. If that name is not found, or if ‘-B’ was not specified,
the driver tries two standard prefixes, which are ‘/usr/lib/gcc/’