
help2man
A utility for generating simple manual pages

Brendan O’Dea bod@debian.org

mailto:bod@debian.org

Copyright c© 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2009 Free Software Foundation, Inc.
Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.
Permission is granted to copy and distribute modified versions of this manual under the con-
ditions for verbatim copying, provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.
Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions, except that this permission notice
may be stated in a translation approved by the Foundation.

Chapter 1: Overview of help2man 1

1 Overview of help2man

help2man is a tool for automatically generating simple manual pages from program output.
Although manual pages are optional for GNU programs other projects, such as Debian

require them (see section “Man Pages” in The GNU Coding Standards)
This program is intended to provide an easy way for software authors to include a manual

page in their distribution without having to maintain that document.
Given a program which produces reasonably standard ‘--help’ and ‘--version’ outputs,

help2man can re-arrange that output into something which resembles a manual page.

Chapter 2: How to Run help2man 2

2 How to Run help2man

The format for running the help2man program is:
perl help2man [option]... executable

help2man supports the following options:

‘-n string ’
‘--name=string ’

Use string as the description for the ‘NAME’ paragraph of the manual page.
By default (for want of anything better) this paragraph contains ‘manual page
for program version ’.
This option overrides an include file ‘[name]’ section (see Chapter 4 [Including
text], page 5).

‘-s section ’
‘--section section ’

Use section as the section for the man page. The default section is 1.

‘-m manual ’
‘--manual=manual ’

Set the name of the manual section to section, used as a centred heading for
the manual page. By default ‘User Commands’ is used for pages in section 1,
‘Games’ for section 6 and ‘System Administration Utilities’ for sections 8
and 1M.

‘-S source ’
‘--source=source ’

The program source is used as a page footer, and often contains the name of
the organisation or a suite of which the program is part. By default the value
is the package name and version.

‘-L locale ’
‘--locale=locale ’

Select output locale (default ‘C’). Both the program and help2man must support
the given locale (see Chapter 6 [Localised man pages], page 7).

‘-i file ’
‘--include=file ’

Include material from file (see Chapter 4 [Including text], page 5).

‘-I file ’
‘--opt-include=file ’

A variant of ‘--include’ for use in Makefile pattern rules which does not require
file to exist.

‘-o file ’
‘--output=file ’

Send output to file rather than stdout.

‘-p text ’
‘--info-page=text ’

Name of Texinfo manual.

Chapter 2: How to Run help2man 3

‘-N’
‘--no-info’

Suppress inclusion of a ‘SEE ALSO’ paragraph directing the reader to the Texinfo
documentation.

‘--help’
‘--version’

Show help or version information.

By default help2man passes the standard ‘--help’ and ‘--version’ options to the exe-
cutable although alternatives may be specified using:

‘-h option ’
‘--help-option=option ’

Help option string.

‘-v option ’
‘--version-option=option ’

Version option string.

‘--version-string=string ’
Version string.

‘--no-discard-stderr’
Include stderr when parsing option output.

Chapter 3: ‘--help’ Recommendations 4

3 ‘--help’ Recommendations

Here are some recommendations for what to include in your ‘--help’ output. Including
these gives help2man the best chance at generating a respectable man page, as well as
benefitting users directly.

See section “Command-Line Interfaces” in standards, and section “Man Pages” in stan-
dards, for the official GNU standards relating to ‘--help’ and man pages.
• A synopsis of how to invoke the program. If different usages of the program have

different invocations, then list them all. For example (edited for brevity):
Usage: cp [OPTION]... SOURCE DEST

or: cp [OPTION]... SOURCE... DIRECTORY

...

Use argv[0] for the program name in these synopses, just as it is, with no directory
stripping. This is in contrast to the canonical (constant) name of the program which
is used in ‘--version’.

• A very brief explanation of what the program does, including default and/or typical
behaviour. For example, here is cp’s:

Copy SOURCE to DEST, or multiple SOURCE(s) to DIRECTORY.

• A list of options, indented to column 2. If the program supports one-character options,
put those first, then the equivalent long option (if any). If the option takes an argument,
include that too, giving it a meaningful name. Align the descriptions in a convenient
column, if desired. Note that to be correctly recognised by help2man the description
must be separated from the options by at least two spaces and descriptions continued
on subsequent lines must start at the same column.
Here again is an (edited) excerpt from cp, showing a short option with an equivalent
long option, a long option only, and a short option only:

-a, --archive same as -dpR

--backup[=CONTROL] make a backup of each ...

-b like --backup but ...

For programs that take many options, it may be desirable to split the option list into
sections such as ‘Global’, ‘Output control’, or whatever makes sense in the particular
case. It is usually best to alphabetise (by short option name first, then long) within
each section, or the entire list if there are no sections.

• Any useful additional information about program behaviour, such as influential en-
vironment variables, further explanation of options, etc. For example, cp discusses
VERSION_CONTROL and sparse files.

• A few examples of typical usage, at your discretion. One good example is usually worth
a thousand words of description, so this is highly recommended.

• In closing, a line stating how to email bug reports. Typically, mailing-address will be
‘bug-program@gnu.org’; please use this form for GNU programs whenever possible.
It’s also good to mention the home page of the program, other mailing lists, etc.

The argp and popt programming interfaces let you specify option descriptions for
‘--help’ in the same structure as the rest of the option definition; you may wish to consider
using these routines for option parsing instead of getopt.

Chapter 4: Including Additional Text in the Output 5

4 Including Additional Text in the Output

Additional static text may be included in the generated manual page by using the
‘--include’ and ‘--opt-include’ options (see Chapter 2 [Invoking help2man], page 2).
While these files can be named anything, for consistency we suggest to use the extension
.h2m for help2man include files.

The format for files included with these option is simple:
[section]
text

/pattern/
text

Blocks of verbatim *roff text are inserted into the output either at the start of the given
‘[section]’ (case insensitive), or after a paragraph matching ‘/pattern/’.

Patterns use the Perl regular expression syntax and may be followed by the ‘i’, ‘s’ or
‘m’ modifiers (see section “perlre(1)” in The perlre(1) manual page)

Lines before the first section or pattern which begin with ‘-’ are processed as options.
Anything else is silently ignored and may be used for comments, RCS keywords and the
like.

The section output order (for those included) is:
NAME
SYNOPSIS
DESCRIPTION
OPTIONS
EXAMPLES
other

AUTHOR
REPORTING BUGS
COPYRIGHT
SEE ALSO

Any ‘[name]’ or ‘[synopsis]’ sections appearing in the include file will replace what
would have automatically been produced (although you can still override the former with
‘--name’ if required).

Other sections are prepended to the automatically produced output for the standard
sections given above, or included at other (above) in the order they were encountered in
the include file.

Chapter 5: Using help2man With make 6

5 Using help2man With make

A suggested use of help2man in Makefiles is to have the manual page depend not on the
binary, but on the source file(s) in which the ‘--help’ and ‘--version’ output are defined.

This usage allows a manual page to be generated by the maintainer and included in the
distribution without requiring the end-user to have help2man installed.

An example rule for the program prog could be:
prog.1: $(srcdir)/main.c

-$(HELP2MAN) --output=$@ --name=’an example program’ ./prog

The value of HELP2MAN may be set in configure.in using either of:
AM_MISSING_PROG(HELP2MAN, help2man, $missing_dir)

for automake, or something like:
AC_PATH_PROG(HELP2MAN, help2man, false // No help2man //)

for autoconf alone.

Chapter 6: Producing Native Language Manual Pages. 7

6 Producing Native Language Manual Pages.

Manual pages may be produced for any locale supported by both the program and
help2man1 with the ‘--locale’ (‘-L’) option.

help2man -L fr_FR@euro -o cp.fr.1 cp

6.1 Changing the Location of Message Catalogs

When creating localised manual pages from a program’s build directory it is probable that
the translations installed in the standard location will not be (if installed at all) correct for
the version of the program being built.

A preloadable library is provided with help2man which will intercept gettext calls
configuring the location of message catalogs for the domain given by $TEXTDOMAIN and
override the location to the path given by $LOCALEDIR.

So for example:
mkdir -p tmp/fr/LC_MESSAGES
cp po/fr.gmo tmp/fr/LC_MESSAGES/prog.mo
LD_PRELOAD="/usr/lib/help2man/bindtextdomain.so" \
LOCALEDIR=tmp \
TEXTDOMAIN=prog \
help2man -L fr_FR@euro -i prog.fr.h2m -o prog.fr.1 prog

rm -rf tmp

will cause prog to load the message catalog from ‘tmp’ rather than ‘/usr/share/locale’.
Notes:
• The generalisation of ‘fr_FR@euro’ to ‘fr’ in the example above is done by gettext,

if a more specific match were available it would also have been re-mapped.
• The inclusion of preloadable_libintl.so in $LD_PRELOAD is required only for cases

(such as glibc) where gettext is built into libc (where __open would otherwise be
satisfied internally).

• This preload hack has only been tested against glibc 2.3.1 and gettext 2.3.1 on a
GNU/Linux system; let me know if it does (or doesn’t) work for you (see Chapter 7
[Reports], page 8).

1 help2man currently supports ‘de_DE’, ‘fi_FI’, ‘fr_FR’, ‘pl_PL’, ‘pt_BR’ and ‘sv_SE’ (see Chapter 7 [Re-
ports], page 8 for how to submit other translations).

Chapter 7: Reporting Bugs or Suggestions 8

7 Reporting Bugs or Suggestions

If you find problems or have suggestions about this program or manual, please report them
to bug-help2man@gnu.org.

Note to translators: when submitting new translations for po/help2man.pot please
additionally translate help2man.h2m (used to augment the manual pages for help2man).

mailto:bug-help2man@gnu.org

Chapter 8: Obtaining help2man 9

8 Obtaining help2man

The latest version of this distribution is available on-line from:
ftp://ftp.gnu.org/gnu/help2man/

ftp://ftp.gnu.org/gnu/help2man/

i

Table of Contents

1 Overview of help2man . 1

2 How to Run help2man . 2

3 ‘--help’ Recommendations . 4

4 Including Additional Text in the Output 5

5 Using help2man With make . 6

6 Producing Native Language Manual Pages. . . 7
6.1 Changing the Location of Message Catalogs . 7

7 Reporting Bugs or Suggestions 8

8 Obtaining help2man . 9

	Overview of help2man
	How to Run help2man
	--help Recommendations
	Including Additional Text in the Output
	Using help2man With make
	Producing Native Language Manual Pages.
	Changing the Location of Message Catalogs

	Reporting Bugs or Suggestions
	Obtaining help2man

